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Abstract

This study constructed a georeferenced database of Cerambycidae species collected in Mexico to document their
distributional patterns in the country. A sample of 24 species with a significant number of records was modeled
to generate their potential distributions, applying a consensus approach. Four prediction algorithms were used:
Maxent, Support Vector Machine, Generalized Linear Model, and Artificial Neural Networks. A total of 1,699
locations were obtained after applying cleaning and georeferencing procedures, resulting in 414 total number of
species georeferenced. Species with > 20 records included 9 genera and 24 species with 779 records; species with
5-20 records included 41 genera and 124 species with 1,072 records; species with < 5 records included 94 genera and
266 species with 512 records. Only species with > 20 records were modeled. According to the Maxent algorithm,
there were variables with high contribution percentages in predictions. Even though the most frequent values of the
environmental (response) variables indicate which areas dominated the species distribution, the range of such values
provides an estimate of the span of environmental values where species can occur. Too much taxonomic field work
is needed to document the species diversity of Cerambycidae in Mexico.
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Resumen

Para este estudio se elabord una base de datos georreferenciados de especies de Cerambycidae rcolectadas en
Meéxico para documentar sus patrones de distribucion. Una muestra de 24 especies fue modelada para generar sus
distribuciones potenciales mediante la aplicacién de un enfoque de consenso. Se usaron 4 algoritmos de prediccion:
Maxent, Support Vector Machine, Generalized Linear Model y Artificial Neural Networks. Un total de 1,699
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localidades fueron obtenidas después de aplicar procedimientos de limpiado y georreferenciacion, lo que resultd en

un total de 414 especies georreferenciadas. Especies con > 20 registros incluyeron 9 géneros y 24 especies con 779

registros; especies con 5-20 registros incluyeron 41 géneros y 124 especies con 1,072 registros; especies con < 5

registros incluyeron 94 géneros y 266 especies con 512 registros. Solamente las especies con > 20 registros fueron

modeladas. De acuerdo con el algoritmo Maxent, existieron variables con altos porcentajes de contribucién en las

predicciones. Los valores mas frecuentes de las variables ambientales (respuesta) indicaron cuéales dominaron la

distribucion de especies y el rango de tales variables provee un estimado de la amplitud de valores ambientales, donde

las especies pueden estar presentes. Hace falta mucho trabajo taxondémico de campo para documentar la diversidad

de especies de Cerambycidae en México.

Palabras clave: Registros de colectas; Cerambycidae; Modelo de distribucion; Variable de repuesta

Introduction

The family Cerambycidae (longhorn beetles) is
one of the largest groups of the order Coleoptera, with
approximately 35,000 described species, most of which are
tropical or equatorial (Monné, 2005; Nearns et al., 2017).
About 9,000 species have been described from Alaska
to Argentina, and 1,621 species are recorded in Mexico
(Bezark & Monné¢, 2023; Noguera, 2014). The species
diversity in Mexico represents 18% of the American fauna
and 4.6% of the global fauna (Noguera, 2014). Climate,
host plant availability and food resources are the main
factors determining Cerambycidae species’ occurrence.
Species distribution and biogeographic information
is limited, focused mainly on describing these fauna’s
origin and lineage (Toledo & Corona, 2006). The main
habitat types for Cerambycidae species in Mexico include
tropical dry forest, pine, pine-oak, and oak forests, as well
as tropical evergreen forest.

The diversity of Cerambycidae is reflected in their
color, body shape, and morphology of adults; these have
a body size between + 2.5 mm (Cyrtinus sp.) to over 17
cm (Titanus giganteus). Some species mimic ants (tribes
Clytini and Tillomorphini), bees, wasps (Rhinotragini),
and beetles (Lycid, Pteroplatini). Larvae are xylophagous
and phytophagous, so they play an important role in
helping decompose dead and nearly dead trees (Linsley,
1961).

When the 3 dimensions (identity, space, and time)
included in biological inventories are integrated with
spatial environmental data, it is possible to study a
wide range of themes, such as ecology, evolution, and
applications in agriculture and human health (Graham
et al., 2004). Moreover, the use of information contained
in scientific collections is considered fundamental in
biogeographic research (Anderson & Martinez-Meyer,
2004).

Advances in statistical techniques, numerical
analysis, machine learning algorithms, and geographic
information systems (GIS) have been responsible for a
significant increase in the elaboration and application of
predicted species distribution models over the last few
decades (Guisan & Zimmermann, 2000). The application
of prediction algorithms and GIS makes it possible to
obtain the probability of species presence in locations
where there is a lack of species distribution information.
This has been particularly useful in domains of ecosystem
conservation and management, where it has been possible
to identify and protect areas with high biological diversity,
notwithstanding the lack or limited data for groups of
species (Lobo et al., 2002; Zaniewski et al., 2002). Species
distribution modeling is considered an interface between
ecological theory and statistical modeling (Austin, 2002).

Many species distribution algorithms have been
developed, which aim to improve the prediction of such
models (Franklin, 2010). Considering the wide variety
of prediction algorithms (Elith & Graham, 2009), a
consensus of models has been adopted as an approach
to generate more robust species distribution predictions
(Aratjo & New, 2007). Species distribution algorithms
differ in various ways: selection of relevant prediction
variables and their response behavior, definition of a fitted
function for each variable, weighting of each variable
contribution, possibility of prediction variables interaction,
and prediction of geographic species occurrence patterns
(Elith et al., 2000).

However, one of the main problems in obtaining
species distribution predictions is that taxonomic studies
of species are incomplete and lack uniformity across
different regions. In fact, new species are discovered
and recorded frequently (Lobo et al., 2002). Models have
been developed that relate species distributions to climate
variables for a wide range of taxonomic groups, including
plants, insects, mammals, birds, reptiles, and amphibians,
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allowing for their comparative performance (Huntley
et al., 2004). Even though there are many examples of
modeling insect species distribution (e.g., Buse et al.,
2007; Ballesteros-Megjia et al., 2013, 2017; Barredo et al.,
2015; Crawford & Hoagland, 2010; D’Amen et al., 2015;
Eickermann et al., 2023; Hassall, 2012; Jung et al., 2016;
Lobo, 2016; Ma & Ma, 2023; Senay & Womer, 2019;
Silva et al., 2016; Ulrichs & Hopper, 2008; Urbani et al.,
2017; Watts & Worner, 2008), other taxonomic groups
are preferred nevertheless the higher species diversity of
the former.

This study’s main objective is to assemble a database of
Cerambycidae species occurrence in the different natural
regions of Mexico, based on the information included in
biological inventories. Moreover, the study will generate
potential habitat distribution models of Cerambycidae
species with a significant number of occurrence data.

Materials and methods

The database of sites where Cerambycidae species
occur was constructed by retrieving information from
recent taxonomic studies. The database also included the
results of surveys carried out since 1995, as part of the
project Insecta of Tropical Dry Forest in Mexico. Priority
information for building the database consisted of species’
taxonomic identity and location data. Biota v2.02 (Colwell,
1996) was the database management system used to store
and organize the species information retrieved from both
scientific literature and surveys conducted in Mexico’s
various natural regions.

Species and locality information were retrieved from
taxonomic studies by a group of 5 biology students. Due
to logistical constraints, the database was divided into 2
subsets. Subset 1 comprised 5,473 records representing
170 species, which were located in 882 localities (190
locations were georeferenced). Subset 2 contained 5,052
records belonging to 268 species located in 1,093 localities
(222 locations were geo-referenced).

The retrieved records included a species taxonomic
hierarchy, which was scrubbed to eliminate duplicate
records. In total, 1,945 localities were recorded with only
412 geo-referenced. Therefore, georeferencing location
information was conducted using: ArcView (v3.2)
and ArcMap (v10.0) geographic information systems;
geographic data such as roads, localities, and political
regionalization provided by INEGI and Conabio, Mexican
government agencies; Gazetteers such as GEOLocate,
JRC Fuzzy Gazetteer, Biogeomancer, INEGI’s geographic
names; MaNIS/HerpNet/ORNIS Coordinate Calculator;
Google Map and Geogle Earth.

Species distribution models were generated from
those species with > 20 records, which was only a small
percentage (6%) of the total species georeferenced (414
species). Species presence records were imported into
ArcMap, ensuring that no duplicates or misplaced sites,
such as those located in the sea, were included.

Nineteen bioclimatic variables (Supplementary
material: A1) were obtained from the WorldClim project
(Fick & Hijmans, 2017; https:/www.worldclim.org/data/
worldclim2l.html)  while  topographic  variables
(Supplementary material: Al) were obtained from the
Hydro 1k dataset (https:/www.usgs.gov/centers/eros/
science/usgs-eros-archive-digital-elevation-hydrolk).

The bioclimatic variables were generated by
interpolating monthly climate data obtained from
meteorological stations between 1950 and 2000 (Hijmans
et al., 2005). Based on the existing correlation among
bioclimatic variables, a subset of variables was selected,
avoiding correlations greater than 0.800 between variable
pairs. Both the bioclimatic and topographic variables had
a 1 x 1 km spatial resolution.

This study generated distribution models based on the
application of a consensus approach throughout obtaining
the median of 4 algorithms: Maximum Entropy (Maxent),
Support Vector Machine (SVM), Generalized Linear
Model (GLM), and Artificial Neural Networks (ANN).
Maxent was applied independently (Phillips & Dudik,
2008) while the other 3 algorithms were applied by using
the Modeco software (Guo & Liu, 2010).

Maxent is a general-purpose machine learning method
with a simple and precise mathematical formulation
(Phillips et al., 2006). Maxent estimates the distribution
(geographic range) of a species by finding the distribution
that has maximum entropy (i.e., it is closest to the
geographically uniform or most spread out) subject to
constraints derived from environmental conditions at
recorded occurrence locations (Phillips et al., 2017).
Maxent is a general approach for presence-only modeling
of species distributions (Phillips et al., 2006). Main
parameters applied to generate Maxent models included:
hinge, linear, and quadratic were the feature types used,
30% of samples were used for model validation; 3.0 was
the regularization multiplier.

The SVM are statistically based models rather than
loose analogies with natural learning systems (Guo et al.,
2005). SVM are not based on characteristics of statistical
distributions so there is no theoretical requirement
for observed data to be independent, overcoming the
problem of autocorrelated observations. However, model
performance will be affected by how well the observed
data represent the range of environmental variables
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(Drake et al., 2006). Even though SVM are designed for
positive and negative objects, normally negative data is
not available and therefore we have a one-class dataset,
which requires the separation of a target class from the
rest of the feature space (Guo et al., 2005). Schélkopf
(2001) developed an SVM of one class.

SVM uses a functional relationship named kernel to
map data onto a new hyperspace in which complicated
patterns can be more simply represented (Miiller et al.,
2001). SVM consists of projecting vectors into a high-
dimensional feature space by means of a kernel, which
makes possible the fitting of the optimal hyperplane that
separates classes using an optimization function (Pouteau
et al, 2012). The main SVM parameters are: SVM
type = C-SVC; Kernel = radial basis function; degree = 3;
gamma = 0.5; cost = 1.

The variants of GLM are widely applied to generate
species distribution models (Norberg et at., 2019). GLM
is a linear regression method where a predictor is selected
to be included or dropped from the considered set of
predictors based on a predefined simplification method
to minimize overfitting (Catalano et al., 2023). GLM
use parametric functions such as linear or higher-degree
polynomials to model the relationship between the
response and predictive variables (Valavi et al., 2022).
A link function transforms the scale of the dependent
variable, then a GLM is able to relax the distribution and
constancy of variances assumptions that are commonly
required by traditional linear models (Guo & Liu, 2010).
The GLM is commonly used to model dependent variables
that are discrete distributions and are nonlinearly related
to independent variables (Guisan et al., 2002). Logit was
the link function to run the GLM.

ANNs extract linear combinations of the input
variables as derived features and model the output as
a nonlinear function of these derived features (Hastie
et al., 2001). ANN utilizes intermediate nodes in what is
referred to as a “hidden layer”, where each node contributes
differentially with respect to the variables included in the
model (Williams et al., 2009). ANN provides a flexible
generalization of GLM and performs better than the latter
when modelling nonlinear relationships (Lek et al., 1966).
The BP-ANN parameters were, momentum = 0.3 and
learning rate = 0.1

Compounded models were validated by applying
the partial ROC test (Peterson et al., 2008). Partial
ROC calculation has been proposed because of several
advantages: it removes the emphasis on absence data,
emphasizes the role of omission error when evaluating
niche model predictivity and analyzes limited sector of the

ROC space which are not directly relevant (Peterson et al.,
2008). The NicheToolBox application (https:/luismurao.
github.io/GSoC/ntb_tutorial.html) was used to calculate
the partial ROC statistics.

A portion of 30% of the total species presence samples
was separated to be used as independent samples for
model validation. The partial ROC test was run through
500 iterations to calculate the average of ROC statistics.
After obtaining consensus distribution models, these were
converted to binary models using a threshold of 0.50
across species for cross tabulating the response variables
and to generate a richness model. The presence (> 0.5)/
absence (< 0.50) for the 24 species were summed to obtain
a version of the richness model.

Results

A total of 1,699 locations with complete data were
obtained after applying cleaning and georeferencing
procedures; however, 246 locations lacked complete
geographic information. The total number of species
georeferenced was 414 (Supplementary material: A2).
Most of data consisted of species with < 20 records (see
Supplementary material: A2): species with > 20 records
included 9 genus and 24 species with 779 total records;
species with 5-20 records included 41 genus and 124
species with 1,072 total records; species with < 5 records
included 94 genus and 266 species with 512 total records
(Fig. 1).

The groups of species with > 20 and 5-19 records are
distributed mostly on the Pacific slope within the states
of Oaxaca and Jalisco (Table 1). On the other hand, states
like Aguascalientes, Coahuila, México City, and Tabasco
included only 1 species. In relation to the country’s natural
regions, most records with the highest species presence
were found in the tropical dry forest ecoregions (Fig. 2).

In the case of the > 20 group, the tropical forests
included twice as many records (348) than the temperate
forests (140 records). Despite such a difference, temperate
forests showed only 2 fewer species (21 species) than the
tropical dry forests (23 species). In the group 5-19 records
per species, the differences in record numbers were more
accentuated: tropical dry forests included 3 times records
(543 for 114 species) than the temperate forests (174 for
63 species). Three natural regions for this group (5-19
records) included a similar number of records: semi-
desert (170 records), temperate forests (174 records), and
tropical rainforests (172 records). Finally, in this group
(5-19 records), the mangrove biome included almost one
record per species, 27 and 22, respectively.
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Figure 1. Collection sites for different number of records of
Cerambycidae species in Mexico. a) Locations for species with
< 5 records; b) locations for species with > 5 and < 20 records;

¢) locations for species with > 20 records.

Based on the correlation matrix among the prediction
variables, the number of variables was reduced from 19
bioclimatic and 3 topographic to 9 and 3, respectively.
All selected variables (Table 2) had correlation indexes <
0.80. Figure 3 and Table 3 show the contribution of each
variable to the generation of distribution models by the
Maxent algorithm.

According to the maxent modelling, some variables
showed almost the total contribution percentage in model
prediction: For instance, the precipitation of driest month

Table 1

Number of Cerambycidae species by state in Mexico.

State Species
Baja California 38
Baja California Sur 62
Campeche 8
Chiapas 92
Chihuahua

Coahuila 4
Colima 22
Mexico City 3
Durango 15
Guanajuato 2
Guerrero 67
Hidalgo 14
Jalisco 96
Estado de México 25
Michoacan 27
Morelos 45
Nayarit 49
Nuevo Leon 17
Oaxaca 104
Puebla 36
Queretaro 3
Quintana Roo 30
San Luis Potosi 24
Sinaloa 47
Sonora 16
Tabasco 3
Tamaulipas 22
Tlaxcala 1
Veracruz 66
Yucatan 33
Zacatecas 7

(wc_biol4) had 94% contribution in predicting Phaea
acromela and 87% contribution in predicting Eburia
brevispinis potential distributions. Similarly, precipitation
seasonality (wc_biol5) contributed 79% and 76% for
modeling Neocompsa puncticollis asperula and Psyrassa
cylindricollis potential distributions, respectively. Other
high contribution percentages included: precipitation of
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Table 2

Selected prediction variables.

Bioclimatic variables

wc_biol = Annual Mean Temperature

wc_bio2 = Mean Diurnal Range (Mean of monthly [max
temp - min temp])

wc_bio3 = Isothermality (BIO2/BIO7) (x100)
wc_bio5 = Max Temperature of Warmest Month
wc_bio7 = Temperature Annual Range (BIO5-BIO6)
wc_bio8 = Mean Temperature of Wettest Quarter
wc_biol3 = Precipitation of Wettest Month
wc_biol4 = Precipitation of Driest Month

wc_biol5 = Precipitation Seasonality (Coefficient of
Variation)

Topographic variables

Elevation
Aspect
Topographic Index

wettest month (wc_biol3) had 73% contribution predicting
Lagocheirus binumeratus; we_biol5 had 71% contribution
predicting Neocompsa alacris; temperature annual range
(wc_bio7) had 71% contribution predicting Lagocheirus
araneiformis ypsilon; isothermality (wc bio3) had 70%
contribution predicting Tetraopes umbonatus; wc_biol4
had 61% contribution predicting Lagocheirus procerus;
and elevation had 60% contribution predicting Tetraopes
femoratus.

Considering  prediction variables with  high
contribution percentages for multiple species models,
Figure 3 and Table 3 show the most important variables:
wc_biol5 (mean = 19%), we biol4 (mean = 17%), wc
bio7 (mean = 16%), wc_biol3 (mean = 15%), elevation
(mean = 14%), and wc_bio3 (mean = 10%). On the other
hand, those prediction variables that had low contribution
percentages for fewer species included: Max temperature
of warmest month (wc bio5, mean = 0.09%), mean
temperature of wettest quarter (we_bio8, mean = 0.80%),
aspect (mean = 1.06%), mean diurnal range (wc_bio2,
mean = 1.07%), topoindex (mean = 2.3%), annual mean
temperature (wc_biol, mean=2.9).

The 4 prediction algorithms, Maximum Entropy
(Maxent), Support Vector Machine (SVM), Generalized
Linear Model (GLM), and Artificial Neural Networks

(ANN) were applied to each of the 24 species that have
> 20 records. The models obtained consisted of probability
approximations generated by both Modeco and Maxent
(ClogLog). The different models for each species were
combined by calculating the median value. Then, model
accuracy was obtained by calculating the partial ROC test
with 500 simulations. These results are shown in Table 4.

In general, the modeled species exhibited high
mean AUC ratios and high mean partial AUC values,
indicating good model performance, as values of 2.0
and 1.0, respectively, represent a perfect model fit. Mean
AUC ratios varied between 1.51 and 1.97, and partial
AUC values varied between 0.75 and 0.98. Species with
very high mean AUC ratios (> 1.9) included Lagocheirus
binumeratus, Psyrassa cylindricollis, Psyrassa sthenias,
Neocompsa alacris, Eburia nigrovittata, Euderces batesi.
On the other hand, the species with the lowest mean AUC
ratios (> 1.5 and < 1.7) were Susuacanga ulkei, Dylobolus
rotundicollis, and Tetraopes discoideus.

Based on the most important prediction variables
identified by the Maxent algorithm, the response variables
corresponding to each species model are shown in
figures 4-9. For the elevation variable, there were species
that preferred elevations between 0 and 50 m: Eburia
laticollis, Susuacanga stigmatica, Psyrassa basicornis,
and Susuacanga ulkei, which also showed significant
predicted areas with elevations above 500 m. On the
other hand, there were species selecting distribution
areas at much higher elevations: Dylobolus rotundicollis
and Tetraopes femoratus at 1,500-2,000 m, Tetraopes
discoideus at 2,000-2,500 m, and Euderces auricaudus
at 2,400-2,600 m (Fig. 4).

Isothermality (we_bio3), which is an indicator of daily
temperature variation with respect to annual temperature
variation, had preferred values < 100 for species models
built with this variable as important (35-70%): Highest
preferred isothermality values were similar for different
species models: Phaea tenuata (65), Euderces batesi (69),
Tetraopes umbonatus (70), and Psyrassa sthenias (71)
(Fig. 5).

According to Maxent, temperature annual ranges
(wc_bio7) were also an important prediction variable for
species with different preferring values: 3 species models
(Susuacanga stigmatica, Lagocheirus araneiformis,
and Psyrassa basicornis) showed temperature annual
ranges preferred at 170-180 mm, while Psyrassa sthenias
preferred the 18-19°C range. Other species models showed
preference for higher temperature annual ranges (Fig. 6):
Euderces auricaudus (21-22 °C), Sphaenothecus triline-
atus (23-24 °C) and Dylobolus rotundicollis (24-25 °C).
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Figure 4. Elevation of species distribution models for which Maxent identified such variables as important (26-60%) in model

prediction.

Precipitation of the wettest month (wc_biol3) was
another important prediction variable whose highest
preferred values varied according to different species:
Lagocheirus  araneiformis, Dylobolus rotundicollis,
Sphaenothecus trilineatus, and Tetraopes discoideus at

150-200 mm; Lagocheirus obsoletus, Mecas obereoides,
Phaea tenuata at 200-250 mm; and Lagocheirus
binumeratus at 300-350 mm (Fig. 7).

The precipitation of the driest month (wc_biol4) was
also an important prediction variable for which its response
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Table 3

Percentage of contribution of each variable in the elaboration of distribution models by the Maxtent algorithm.

Species aspect elevation topoindex wc_biol wc_bio2 wc bio3 wc bioS wc bio7 wc bio8 wc biol3 we_biol4 we biolS
Eburia 0.5 0 0 0 4.8 0 0 7.8 0 0 87 0
brevispinis

E. laticollis 0 27.4 0 257 0 1.9 0 0.3 11.3 334
E. nigrovittata 0 0 0 26.5 0 10.4 0 2 13.5 47.6
Susuacanga 0 50.2 0 2.7 0 0 0 359 1.5 9.8 0 0
stigmatica

S. ulkei 0.1 25.8 0 0 0.1 2.2 0 0 13.8 0 449 13.2
Euderces 0 30.7 0 0 0 15.3 0 53.1 0.5 0 0.4 0
auricaudus

E. batesi 0.5 24.2 0 0 0 35.1 1.8 19.8 0.3 15.4 3
Lagocheirus 0.3 0.1 5.5 0 1.7 0 0.1 70.8 0 21.1 0 0.4
araneiformis

ypsilon

L. binumeratus 7.9 0.7 0 0 0 0.3 0.1 17.5 0 73.4 0 0
L. obsoletus 0 1.2 2.9 1 0 6.1 0 15.3 0 46.4 16.2 10.9
L. procerus 0 47 0 1.4 6.5 0 0 1.8 0.4 13.1 60.8 114
Mecas 0 0 0 2.2 0 0 0 15.3 0 373 1.6 43.5
obereoides

Dylobolus 0 27.1 10.3 0 0 0 0 20.3 1.1 22.6 18.5 0
rotundicollis

Neocompsa 0 1.9 10.7 53 0 0 0 5.6 0 3.6 2.1 70.7
alacris

N. puncticollis 7 0 0 0 2 0 0 4.7 0 33 44 78.6
asperula

Phaea 33 0 0 0 0 0.2 0 0 0 24 94.2 0
acromela

P. tenuata 24 6.3 0.5 0 0 38.5 0 34 0 434 2 35
Psyrassa 0 26.6 0 5.3 0.1 16.5 0 445 1.6 5.3 0.1 0
basicornis

P. cylindricollis 1 9 0.6 0 0 0 0.1 3 0 7.8 2.1 76.3
P. sthenias 2.4 0.6 0 0 0 355 0 20.7 0 4.5 17.2 19.1
Sphaenothecus 0 0 0.4 0.2 0 14.4 0 27 0 25.1 20.9 12
trilineatus

Tetraopes 0 41.2 10.5 0 0 16.5 0 1.2 0 243 2.3 4.1
discoideus

T. femoratus 0 59.9 13.9 0 10.5 0 0 0 0 0 2.3 13.4
T umbonatus 0 0.4 0 0 0 70.1 0 3.5 0 0 0 26
Mean 1.06 14.08 2.30 2.93 1.07 10.45 0.09 15.98 0.80 15.05 16.87 19.34
Median 0.00 3.30 0.00 0.00 0.00 0.10 0.00 9.10 0.00 6.55 2.65 11.15
Standard 2.17 18.15 4.35 7.31 2.60 17.81 0.37 18.62 2.81 18.89 27.21 25.63

deviation
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Table 4

Partial ROC results for modeled species.

Species Mean AUC Mean partial
ratio AUC

Eburia brevispinis 1.884237  0.9420767
E. laticollis 1.857125  0.9285514
E. nigrovittata 1.939383 0.9696851
Susuacanga stigmatica 1.738087  0.869013
S. ulkei 1.512725  0.7563525
Euderces auricaudus 1.822893  0.9114264
E. batesi 1.972096  0.9860455
Lagocheirus araneiformis ypsilon 1.789459 0.8944192
L. binumeratus 1.909858  0.9549165
L. obsoletus 1.772241 0.886116
L. procerus 1.749532 0.8747619
Mecas obereoides 1.767577 0.8837588
Dylobolus rotundicollis 1.664294  0.8320284
Neocompsa alacris 1.938096  0.9690422
N. puncticollis asperula 1.883306  0.9416244
Phaea acromela 1.866931 0.9334454
P. tenuata 1.776351 0.888124
Psyrassa basicornis 1.871859 0.9359075
P. cylindricollis 1.919474 0.9597301
P. sthenias 1.921234  0.9606008
Sphaenothecus trilineatus 1.876181 0.9380483
Tetraopes discoideus 1.680489  0.8401879
T. femoratus 1.815506 0.907635
T. umbonatus 1.707098 0.8535488

variable took the highest preferred values between 0 and
25-50 mm: Susuacanga ulkei and Lagocheirus procerus
showed the highest preferred values of 0 mm, Dylobolus
rotundicollis and Sphaenothecus trilineatus at 3 mm,
and Eburia brevispinis and Phaea acromela at 25-50 mm
(Fig. 8).

Finally, the precipitation seasonality (wc biol5),
which is the coefficient of variation of precipitation, was
an important prediction variable whose preferred highest
values (110) seem similar for this group of species (Fig. 9):
Eburia laticollis, Eburia nigrovittata, Mecas obereoides,
Neocompsa alacris, Neocompsa puncticollis asperula,
and Psyrassa cylindricollis.

A composite map was generated by adding each of 24
binary species distribution models (Fig. 10). In general,
species that highly concurred (16-21 spp.) in only 2 very
confined areas, located in southern Sinaloa and southern
Oaxaca. On the other hand, large areas with no species
concurring were in northern Mexico (Fig. 10). This
richness map was cross-tabulated with the ecoregion
map to show the biomes associated with the different
concurring intervals (Fig. 11). Each richness interval
was tabulated for different ecoregions, showing that the
highest range (16-21 spp.) corresponded to the tropical
dry forest in 75% and the tropical humid forest in 24%.
The second highest interval (11-15 spp.) corresponded
again to the tropical dry forest (69%), but this time, the
temperate mountains were in the second place with 17%,
and the tropical humid forest with 14%. On the other hand,
the areas with no species concurrence corresponded to
the North American Desert (45%), followed by the Great
Plains (21%), temperate mountains (12%), and semi-desert
(11%). The tropical dry forest occupied 8% of such areas
with no species concurrence, while the tropical humid
forest occupied only 0.2%.

Discussion

Considering the original number of records included
in the databases (> 10,000) along with the localities,
both georeferenced and without geographic coordinates,
and the number of species, there was the expectation to
obtain a database with a significant number of species and
records. However, there existed a very limited number
of species (24) with enough records (= 20) to be used
in modeling species potential distribution. In fact, the
species with > 5 and < 20 records were also limited
(124), and the bulk of species (266) had < 5 records
(Supplementary material: A2). It is evident that extensive
taxonomic fieldwork is necessary to document the species
diversity of Cerambycidae in Mexico. In this regard, and
apparently supporting this pattern of records, 7.4% of the
species recorded in Mexico have no locality records in the
country, 45.5% have been recorded in only one state, and
16% in 2 states. This means that nearly 69% of the species
have either a restricted distribution or are poorly studied
in terms of their distribution (F. A. Noguera, unpublished
data).

By mapping the geographic location of Cerambycidae
species records in Mexico, it is noteworthy that the
sampling intensity does not necessarily reflect the
intensity of sampling, as the information included
primarily corresponds to taxonomically studied groups
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Figure 5. Isothermality of species distribution models for which Maxent identified such variables as important (0-35%) in model

prediction.

rather than studies aimed at documenting the diversity of
the different regions of the country, and sampling gaps
are revealed by state and ecoregion across the country. In
fact, the map somewhat confirms the current knowledge
about the diversity of this group in the various states of
the republic (Martinez-Hernandez et al., 2024; Noguera,
2014; Noguera unpublished data). For example, in fact,
565 species have been recorded in Oaxaca, 485 in
Veracruz, 435 in Chiapas, 397 in Jalisco, 283 in Guerrero,
and 216 in Morelos —states with the highest number of
records included in the study. In contrast, states such
as Tlaxcala (10 species), Campeche (11), Aguascalientes
(12), Tabasco (21), Zacatecas (26), Guanajuato (33),
Coahuila (35), Mexico City (36), Nuevo Ledn (69), and
Chihuahua (73) recorded the fewest species in this study.
In the > 20 records per species group, the most sampled
biome was the tropical dry forest (348 records and 23
species), while the temperate forests included 21 species
with 140 records.

The 24 species distribution models primarily
represent examples of this family’s species that are better
sampled in the country. Different from relying on a
single prediction algorithm, this study presents consensus
models, generated from combining probability versions

of 4 algorithms: Maxent, Artificial Neural Networks,
Generalized Linear Model, and Support Vector Machine.
The median was the statistic chosen for combining the 4
algorithms because of its characteristic of being a location
parameter in contrast with the mean, which combines in-
depth partial values, and is affected by outliers. Although
the variations among models for the same species were
evident, all 24 species distribution models showed good
performance, as indicated by the AUC ratios and partial
AUC values.

According to Maxent, prediction variables differed in
importance for predicting species potential distribution
models. The variables that had higher mean importance
among species included precipitation seasonality
(wc_biol5), precipitation of driest month (wc biol4),
temperatureannualrange (wec_bio7), precipitation of wettest
month (wc_biol3), elevation, and isothermality (wc_bio3).
As in this case, other studies on Cerambycidae, where
the potential distribution of some species in this group
was modeled, also showed that the predictive bioclimatic
variables were diverse and contributed to the models to
varying degrees. For example, for Psacothea hilaris, the
predictive variables were precipitation of the warmest
quarter (wc_biol8) and isothermality (wc bio3) (Ruzzier
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Figure 8. Precipitation of driest month of species distribution models for which Maxent identified such variable as important (19-

94%) in model prediction.

et al., 2024); for Rosalia alpina, they were elevation and
mean temperature of the driest quarter (wc_bio9) (Bosso
et al., 2018); for Morimus asper, they were the maximum
temperature during the warmest month (wc_bio5) and
altitude (Kostova et al., 2023); for Batocera lineolata,
they were maximum temperature in January, precipitation
in July, and temperature seasonality (wc_bio4) (Li et al.,
2020); for Xylotrechus arvicola, they were precipitation
in October, mean maximum temperature in January,
mean minimum temperature in July, mean maximum
temperature, and mean minimum temperature in August
(Felicisimo et al., 2021); for Monochamus carolinensis,
they were precipitation of the warmest quarter (wc_biol8),
precipitation seasonality (wc_biol5), precipitation of the

coldest quarter (wc_biol9), mean diurnal range (wc_bio2),
and minimum temperature of the coldest month (wc_bio5)
(Zhao et al., 2023). This recorded variety in predictive
environmental variables corresponds to the region where
each of these studies was conducted. For P. hilaris, the
main areas were Italy and the Mediterranean region; for
R. alpina, it was Europe; for M. asper, it was Bulgaria; for
B. lineolata, it was China; for X. arvicola, it was Spain;
and for M. carolinensis, it was on a global scale.

The response variables obtained by cross-tabulating
the species presence models with the environmental
(prediction) variables identify the most favorable habitat
conditions, according to the predicted distribution
models. Even though the most frequent values of the
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Figure 9. Precipitation seasonality of species distribution models for which Maxent identified such variable as important (33-79%)

in model prediction.

environmental variables indicate which areas dominated
the species distribution, the range of such values provides
an estimate of the span of environmental values where
species can occur.

The24 modeled species showedspatial correspondence,
where the highest interval (16-21 species) is confined to
restricted areas with tropical and humid tropical forests

in the country. Larger species spatial correspondence
areas corresponded to the lowest intervals (1-5 and 6-10
species), which were distributed in the tropical dry forest
and temperate forests. It is worth mentioning that biomes
such as the North American deserts and the Great Plains
showed the highest proportion of areas with the absence
of species.
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