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Abstract
This study constructed a georeferenced database of Cerambycidae species collected in Mexico to document their 

distributional patterns in the country. A sample of 24 species with a significant number of records was modeled 
to generate their potential distributions, applying a consensus approach. Four prediction algorithms were used: 
Maxent, Support Vector Machine, Generalized Linear Model, and Artificial Neural Networks. A total of 1,699 
locations were obtained after applying cleaning and georeferencing procedures, resulting in 414 total number of 
species georeferenced. Species with ≥ 20 records included 9 genera and 24 species with 779 records; species with 
5-20 records included 41 genera and 124 species with 1,072 records; species with < 5 records included 94 genera and 
266 species with 512 records. Only species with ≥ 20 records were modeled. According to the Maxent algorithm, 
there were variables with high contribution percentages in predictions. Even though the most frequent values of the 
environmental (response) variables indicate which areas dominated the species distribution, the range of such values 
provides an estimate of the span of environmental values where species can occur. Too much taxonomic field work 
is needed to document the species diversity of Cerambycidae in Mexico. 
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Resumen
Para este estudio se elaboró una base de datos georreferenciados de especies de Cerambycidae rcolectadas en 

México para documentar sus patrones de distribución. Una muestra de 24 especies fue modelada para generar sus 
distribuciones potenciales mediante la aplicación de un enfoque de consenso. Se usaron 4 algoritmos de predicción: 
Maxent, Support Vector Machine, Generalized Linear Model y Artificial Neural Networks. Un total de 1,699 
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Introduction

The family Cerambycidae (longhorn beetles) is 
one of the largest groups of the order Coleoptera, with 
approximately 35,000 described species, most of which are 
tropical or equatorial (Monné, 2005; Nearns et al., 2017). 
About 9,000 species have been described from Alaska 
to Argentina, and 1,621 species are recorded in Mexico 
(Bezark & Monné, 2023; Noguera, 2014). The species 
diversity in Mexico represents 18% of the American fauna 
and 4.6% of the global fauna (Noguera, 2014). Climate, 
host plant availability and food resources are the main 
factors determining Cerambycidae species’ occurrence. 
Species distribution and biogeographic information 
is limited, focused mainly on describing these fauna’s 
origin and lineage (Toledo & Corona, 2006). The main 
habitat types for Cerambycidae species in Mexico include 
tropical dry forest, pine, pine-oak, and oak forests, as well 
as tropical evergreen forest. 

The diversity of Cerambycidae is reflected in their 
color, body shape, and morphology of adults; these have 
a body size between ± 2.5 mm (Cyrtinus sp.) to over 17 
cm (Titanus giganteus). Some species mimic ants (tribes 
Clytini and Tillomorphini), bees, wasps (Rhinotragini), 
and beetles (Lycid, Pteroplatini). Larvae are xylophagous 
and phytophagous, so they play an important role in 
helping decompose dead and nearly dead trees (Linsley, 
1961).

When the 3 dimensions (identity, space, and time) 
included in biological inventories are integrated with 
spatial environmental data, it is possible to study a 
wide range of themes, such as ecology, evolution, and 
applications in agriculture and human health (Graham 
et al., 2004). Moreover, the use of information contained 
in scientific collections is considered fundamental in 
biogeographic research (Anderson & Martínez-Meyer, 
2004).

Advances in statistical techniques, numerical 
analysis, machine learning algorithms, and geographic 
information systems (GIS) have been responsible for a 
significant increase in the elaboration and application of 
predicted species distribution models over the last few 
decades (Guisan & Zimmermann, 2000). The application 
of prediction algorithms and GIS makes it possible to 
obtain the probability of species presence in locations 
where there is a lack of species distribution information. 
This has been particularly useful in domains of ecosystem 
conservation and management, where it has been possible 
to identify and protect areas with high biological diversity, 
notwithstanding the lack or limited data for groups of 
species (Lobo et al., 2002; Zaniewski et al., 2002). Species 
distribution modeling is considered an interface between 
ecological theory and statistical modeling (Austin, 2002).

Many species distribution algorithms have been 
developed, which aim to improve the prediction of such 
models (Franklin, 2010). Considering the wide variety 
of prediction algorithms (Elith & Graham, 2009), a 
consensus of models has been adopted as an approach 
to generate more robust species distribution predictions 
(Araújo & New, 2007). Species distribution algorithms 
differ in various ways: selection of relevant prediction 
variables and their response behavior, definition of a fitted 
function for each variable, weighting of each variable 
contribution, possibility of prediction variables interaction, 
and prediction of geographic species occurrence patterns 
(Elith et al., 2006).

However, one of the main problems in obtaining 
species distribution predictions is that taxonomic studies 
of species are incomplete and lack uniformity across 
different regions. In fact, new species are discovered 
and recorded frequently (Lobo et al., 2002). Models have 
been developed that relate species distributions to climate 
variables for a wide range of taxonomic groups, including 
plants, insects, mammals, birds, reptiles, and amphibians, 

localidades fueron obtenidas después de aplicar procedimientos de limpiado y georreferenciación, lo que resultó en 
un total de 414 especies georreferenciadas. Especies con ≥ 20 registros incluyeron 9 géneros y 24 especies con 779 
registros; especies con 5-20 registros incluyeron 41 géneros y 124 especies con 1,072 registros; especies con ˂ 5 
registros incluyeron 94 géneros y 266 especies con 512 registros. Solamente las especies con ≥ 20 registros fueron 
modeladas. De acuerdo con el algoritmo Maxent, existieron variables con altos porcentajes de contribución en las 
predicciones. Los valores más frecuentes de las variables ambientales (respuesta) indicaron cuáles dominaron la 
distribución de especies y el rango de tales variables provee un estimado de la amplitud de valores ambientales, donde 
las especies pueden estar presentes. Hace falta mucho trabajo taxonómico de campo para documentar la diversidad 
de especies de Cerambycidae en México.

Palabras clave: Registros de colectas; Cerambycidae; Modelo de distribución; Variable de repuesta
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allowing for their comparative performance (Huntley 
et  al., 2004). Even though there are many examples of 
modeling insect species distribution (e.g., Buse et  al., 
2007; Ballesteros-Mejia et al., 2013, 2017; Barredo et al., 
2015; Crawford & Hoagland, 2010; D’Amen et al., 2015; 
Eickermann et al., 2023; Hassall, 2012; Jung et al., 2016; 
Lobo, 2016; Ma & Ma, 2023; Senay & Womer, 2019; 
Silva et al., 2016; Ulrichs & Hopper, 2008; Urbani et al., 
2017; Watts & Worner, 2008), other taxonomic groups 
are preferred nevertheless the higher species diversity of 
the former.

This study’s main objective is to assemble a database of 
Cerambycidae species occurrence in the different natural 
regions of Mexico, based on the information included in 
biological inventories. Moreover, the study will generate 
potential habitat distribution models of Cerambycidae 
species with a significant number of occurrence data.

Materials and methods

The database of sites where Cerambycidae species 
occur was constructed by retrieving information from 
recent taxonomic studies. The database also included the 
results of surveys carried out since 1995, as part of the 
project Insecta of Tropical Dry Forest in Mexico. Priority 
information for building the database consisted of species’ 
taxonomic identity and location data. Biota v2.02 (Colwell, 
1996) was the database management system used to store 
and organize the species information retrieved from both 
scientific literature and surveys conducted in Mexico’s 
various natural regions.

Species and locality information were retrieved from 
taxonomic studies by a group of 5 biology students. Due 
to logistical constraints, the database was divided into 2 
subsets. Subset 1 comprised 5,473 records representing 
170 species, which were located in 882 localities (190 
locations were georeferenced). Subset 2 contained 5,052 
records belonging to 268 species located in 1,093 localities 
(222 locations were geo-referenced).

The retrieved records included a species taxonomic 
hierarchy, which was scrubbed to eliminate duplicate 
records. In total, 1,945 localities were recorded with only 
412 geo-referenced. Therefore, georeferencing location 
information was conducted using: ArcView (v3.2) 
and ArcMap (v10.0) geographic information systems; 
geographic data such as roads, localities, and political 
regionalization provided by INEGI and Conabio, Mexican 
government agencies; Gazetteers such as GEOLocate, 
JRC Fuzzy Gazetteer, Biogeomancer, INEGI’s geographic 
names; MaNIS/HerpNet/ORNIS Coordinate Calculator; 
Google Map and Geogle Earth.

Species distribution models were generated from 
those species with ≥ 20 records, which was only a small 
percentage (6%) of the total species georeferenced (414 
species). Species presence records were imported into 
ArcMap, ensuring that no duplicates or misplaced sites, 
such as those located in the sea, were included.

Nineteen bioclimatic variables (Supplementary 
material: A1) were obtained from the WorldClim project 
(Fick & Hijmans, 2017; https://www.worldclim.org/data/ 
worldclim21.html) while topographic variables 
(Supplementary material: A1) were obtained from the 
Hydro 1k dataset (https://www.usgs.gov/centers/eros/
science/usgs-eros-archive-digital-elevation-hydro1k).

The bioclimatic variables were generated by 
interpolating monthly climate data obtained from 
meteorological stations between 1950 and 2000 (Hijmans 
et  al., 2005). Based on the existing correlation among 
bioclimatic variables, a subset of variables was selected, 
avoiding correlations greater than 0.800 between variable 
pairs. Both the bioclimatic and topographic variables had 
a 1 × 1 km spatial resolution.

This study generated distribution models based on the 
application of a consensus approach throughout obtaining 
the median of 4 algorithms: Maximum Entropy (Maxent), 
Support Vector Machine (SVM), Generalized Linear 
Model (GLM), and Artificial Neural Networks (ANN). 
Maxent was applied independently (Phillips & Dudik, 
2008) while the other 3 algorithms were applied by using 
the Modeco software (Guo & Liu, 2010). 

Maxent is a general-purpose machine learning method 
with a simple and precise mathematical formulation 
(Phillips et al., 2006). Maxent estimates the distribution 
(geographic range) of a species by finding the distribution 
that has maximum entropy (i.e., it is closest to the 
geographically uniform or most spread out) subject to 
constraints derived from environmental conditions at 
recorded occurrence locations (Phillips et  al., 2017). 
Maxent is a general approach for presence-only modeling 
of species distributions (Phillips et  al., 2006). Main 
parameters applied to generate Maxent models included: 
hinge, linear, and quadratic were the feature types used; 
30% of samples were used for model validation; 3.0 was 
the regularization multiplier. 

The SVM are statistically based models rather than 
loose analogies with natural learning systems (Guo et al., 
2005). SVM are not based on characteristics of statistical 
distributions so there is no theoretical requirement 
for observed data to be independent, overcoming the 
problem of autocorrelated observations. However, model 
performance will be affected by how well the observed 
data represent the range of environmental variables 

https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-hydro1k
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-hydro1k
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(Drake et al., 2006). Even though SVM are designed for 
positive and negative objects, normally negative data is 
not available and therefore we have a one-class dataset, 
which requires the separation of a target class from the 
rest of the feature space (Guo et  al., 2005). Schölkopf 
(2001) developed an SVM of one class.

SVM uses a functional relationship named kernel to 
map data onto a new hyperspace in which complicated 
patterns can be more simply represented (Müller et  al., 
2001). SVM consists of projecting vectors into a high-
dimensional feature space by means of a kernel, which 
makes possible the fitting of the optimal hyperplane that 
separates classes using an optimization function (Pouteau 
et  al., 2012). The main SVM parameters are: SVM 
type = C-SVC; Kernel = radial basis function; degree = 3; 
gamma = 0.5; cost = 1. 

The variants of GLM are widely applied to generate 
species distribution models (Norberg et at., 2019). GLM 
is a linear regression method where a predictor is selected 
to be included or dropped from the considered set of 
predictors based on a predefined simplification method 
to minimize overfitting (Catalano et  al., 2023). GLM 
use parametric functions such as linear or higher-degree 
polynomials to model the relationship between the 
response and predictive variables (Valavi et  al., 2022). 
A link function transforms the scale of the dependent 
variable, then a GLM is able to relax the distribution and 
constancy of variances assumptions that are commonly 
required by traditional linear models (Guo & Liu, 2010). 
The GLM is commonly used to model dependent variables 
that are discrete distributions and are nonlinearly related 
to independent variables (Guisan et al., 2002). Logit was 
the link function to run the GLM.

ANNs extract linear combinations of the input 
variables as derived features and model the output as 
a nonlinear function of these derived features (Hastie 
et al., 2001). ANN utilizes intermediate nodes in what is 
referred to as a “hidden layer”, where each node contributes 
differentially with respect to the variables included in the 
model (Williams et  al., 2009). ANN provides a flexible 
generalization of GLM and performs better than the latter 
when modelling nonlinear relationships (Lek et al., 1966). 
The BP-ANN parameters were, momentum  =  0.3 and 
learning rate = 0.1

Compounded models were validated by applying 
the partial ROC test (Peterson et  al., 2008). Partial 
ROC calculation has been proposed because of several 
advantages: it removes the emphasis on absence data, 
emphasizes the role of omission error when evaluating 
niche model predictivity and analyzes limited sector of the 

ROC space which are not directly relevant (Peterson et al., 
2008). The NicheToolBox application (https://luismurao.
github.io/GSoC/ntb_tutorial.html) was used to calculate 
the partial ROC statistics.

A portion of 30% of the total species presence samples 
was separated to be used as independent samples for 
model validation. The partial ROC test was run through 
500 iterations to calculate the average of ROC statistics. 
After obtaining consensus distribution models, these were 
converted to binary models using a threshold of 0.50 
across species for cross tabulating the response variables 
and to generate a richness model. The presence (≥ 0.5)/ 
absence (< 0.50) for the 24 species were summed to obtain 
a version of the richness model.

Results

A total of 1,699 locations with complete data were 
obtained after applying cleaning and georeferencing 
procedures; however, 246 locations lacked complete 
geographic information. The total number of species 
georeferenced was 414 (Supplementary material: A2). 
Most of data consisted of species with < 20 records (see 
Supplementary material: A2): species with ≥ 20 records 
included 9 genus and 24 species with 779 total records; 
species with 5-20 records included 41 genus and 124 
species with 1,072 total records; species with < 5 records 
included 94 genus and 266 species with 512 total records 
(Fig. 1).

The groups of species with ≥ 20 and 5-19 records are 
distributed mostly on the Pacific slope within the states 
of Oaxaca and Jalisco (Table 1). On the other hand, states 
like Aguascalientes, Coahuila, México City, and Tabasco 
included only 1 species. In relation to the country’s natural 
regions, most records with the highest species presence 
were found in the tropical dry forest ecoregions (Fig. 2). 

In the case of the  ≥  20 group, the tropical forests 
included twice as many records (348) than the temperate 
forests (140 records). Despite such a difference, temperate 
forests showed only 2 fewer species (21 species) than the 
tropical dry forests (23 species). In the group 5-19 records 
per species, the differences in record numbers were more 
accentuated: tropical dry forests included 3 times records 
(543 for 114 species) than the temperate forests (174 for 
63 species). Three natural regions for this group (5-19 
records) included a similar number of records: semi-
desert (170 records), temperate forests (174 records), and 
tropical rainforests (172 records). Finally, in this group 
(5-19 records), the mangrove biome included almost one 
record per species, 27 and 22, respectively.

https://luismurao.github.io/GSoC/ntb_tutorial.html
https://luismurao.github.io/GSoC/ntb_tutorial.html
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Based on the correlation matrix among the prediction 
variables, the number of variables was reduced from 19 
bioclimatic and 3 topographic to 9 and 3, respectively. 
All selected variables (Table 2) had correlation indexes < 
0.80. Figure 3 and Table 3 show the contribution of each 
variable to the generation of distribution models by the 
Maxent algorithm.

According to the maxent modelling, some variables 
showed almost the total contribution percentage in model 
prediction: For instance, the precipitation of driest month 

(wc_bio14) had 94% contribution in predicting Phaea 
acromela and 87% contribution in predicting Eburia 
brevispinis potential distributions. Similarly, precipitation 
seasonality (wc_bio15) contributed 79% and 76% for 
modeling Neocompsa puncticollis asperula and Psyrassa 
cylindricollis potential distributions, respectively. Other 
high contribution percentages included: precipitation of 

Figure 1. Collection sites for different number of records of 
Cerambycidae species in Mexico. a) Locations for species with 
< 5 records; b) locations for species with ≥ 5 and < 20 records; 
c) locations for species with ≥ 20 records.

Table 1
Number of Cerambycidae species by state in Mexico.

State Species

Baja California 38
Baja California Sur 62
Campeche 8
Chiapas 92
Chihuahua 8
Coahuila 4
Colima 22
Mexico City 3
Durango 15
Guanajuato 2
Guerrero 67
Hidalgo 14
Jalisco 96
Estado de México 25
Michoacan 27
Morelos 45
Nayarit 49
Nuevo Leon 17
Oaxaca 104
Puebla 36
Queretaro 3
Quintana Roo 30
San Luis Potosi 24
Sinaloa 47
Sonora 16
Tabasco 3
Tamaulipas 22
Tlaxcala 1
Veracruz 66
Yucatan 33
Zacatecas 7
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Figure 2. Species and collection sites of Cerambycidae by biome in Mexico.

Figure 3. Percentage of contribution of each prediction variable to the Maxent distribution model for 24 of Cerambycidae species 
in Mexico.
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wettest month (wc_bio13) had 73% contribution predicting 
Lagocheirus binumeratus; wc_bio15 had 71% contribution 
predicting Neocompsa alacris; temperature annual range 
(wc_bio7) had 71% contribution predicting Lagocheirus 
araneiformis ypsilon; isothermality (wc_bio3) had 70% 
contribution predicting Tetraopes umbonatus; wc_bio14 
had 61% contribution predicting Lagocheirus procerus; 
and elevation had 60% contribution predicting Tetraopes 
femoratus.

Considering prediction variables with high 
contribution percentages for multiple species models, 
Figure 3 and Table 3 show the most important variables: 
wc_bio15 (mean  =  19%), wc_bio14 (mean  =  17%), wc_
bio7 (mean  =  16%), wc_bio13 (mean  =  15%), elevation 
(mean = 14%), and wc_bio3 (mean = 10%). On the other 
hand, those prediction variables that had low contribution 
percentages for fewer species included: Max temperature 
of warmest month (wc_bio5, mean  =  0.09%), mean 
temperature of wettest quarter (wc_bio8, mean = 0.80%), 
aspect (mean  =  1.06%), mean diurnal range (wc_bio2, 
mean = 1.07%), topoindex (mean = 2.3%), annual mean 
temperature (wc_bio1, mean=2.9).

The 4 prediction algorithms, Maximum Entropy 
(Maxent), Support Vector Machine (SVM), Generalized 
Linear Model (GLM), and Artificial Neural Networks 

(ANN) were applied to each of the 24 species that have 
≥ 20 records. The models obtained consisted of probability 
approximations generated by both Modeco and Maxent 
(ClogLog). The different models for each species were 
combined by calculating the median value. Then, model 
accuracy was obtained by calculating the partial ROC test 
with 500 simulations. These results are shown in Table 4. 

In general, the modeled species exhibited high 
mean AUC ratios and high mean partial AUC values, 
indicating good model performance, as values of 2.0 
and 1.0, respectively, represent a perfect model fit. Mean 
AUC ratios varied between 1.51 and 1.97, and partial 
AUC values varied between 0.75 and 0.98. Species with 
very high mean AUC ratios (> 1.9) included Lagocheirus 
binumeratus, Psyrassa cylindricollis, Psyrassa sthenias, 
Neocompsa alacris, Eburia nigrovittata, Euderces batesi. 
On the other hand, the species with the lowest mean AUC 
ratios (> 1.5 and < 1.7) were Susuacanga ulkei, Dylobolus 
rotundicollis, and Tetraopes discoideus. 

Based on the most important prediction variables 
identified by the Maxent algorithm, the response variables 
corresponding to each species model are shown in 
figures 4-9. For the elevation variable, there were species 
that preferred elevations between 0 and 50 m: Eburia 
laticollis, Susuacanga stigmatica, Psyrassa basicornis, 
and Susuacanga ulkei, which also showed significant 
predicted areas with elevations above 500 m. On the 
other hand, there were species selecting distribution 
areas at much higher elevations: Dylobolus rotundicollis 
and Tetraopes femoratus at 1,500-2,000 m, Tetraopes 
discoideus at 2,000-2,500 m, and Euderces auricaudus 
at 2,400-2,600 m (Fig. 4).

Isothermality (wc_bio3), which is an indicator of daily 
temperature variation with respect to annual temperature 
variation, had preferred values < 100 for species models 
built with this variable as important (35-70%): Highest 
preferred isothermality values were similar for different 
species models: Phaea tenuata (65), Euderces batesi (69), 
Tetraopes umbonatus (70), and Psyrassa sthenias (71) 
(Fig. 5).

According to Maxent, temperature annual ranges 
(wc_bio7) were also an important prediction variable for 
species with different preferring values: 3 species models 
(Susuacanga stigmatica, Lagocheirus araneiformis, 
and Psyrassa basicornis) showed temperature annual 
ranges preferred at 170-180 mm, while Psyrassa sthenias 
preferred the 18-19ᵒC range. Other species models showed 
preference for higher temperature annual ranges (Fig. 6): 
Euderces auricaudus (21-22 ᵒC), Sphaenothecus triline- 
atus (23-24 ᵒC) and Dylobolus rotundicollis (24-25 ᵒC).

Table 2
Selected prediction variables.

Bioclimatic variables

wc_bio1 = Annual Mean Temperature
wc_bio2 = Mean Diurnal Range (Mean of monthly [max 
temp - min temp])
wc_bio3 = Isothermality (BIO2/BIO7) (×100)
wc_bio5 = Max Temperature of Warmest Month
wc_bio7 = Temperature Annual Range (BIO5-BIO6)
wc_bio8 = Mean Temperature of Wettest Quarter
wc_bio13 = Precipitation of Wettest Month
wc_bio14 = Precipitation of Driest Month
wc_bio15 = Precipitation Seasonality (Coefficient of 
Variation)

Topographic variables

Elevation
Aspect
Topographic Index
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Precipitation of the wettest month (wc_bio13) was 
another important prediction variable whose highest 
preferred values varied according to different species: 
Lagocheirus araneiformis, Dylobolus rotundicollis, 
Sphaenothecus trilineatus, and Tetraopes discoideus at 

150-200 mm; Lagocheirus obsoletus, Mecas obereoides, 
Phaea tenuata at 200-250 mm; and Lagocheirus 
binumeratus at 300-350 mm (Fig. 7).

The precipitation of the driest month (wc_bio14) was 
also an important prediction variable for which its response 

Figure 4. Elevation of species distribution models for which Maxent identified such variables as important (26-60%) in model 
prediction.
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Table 3
Percentage of contribution of each variable in the elaboration of distribution models by the Maxtent algorithm.

Species aspect elevation topoindex wc_bio1 wc_bio2 wc_bio3 wc_bio5 wc_bio7 wc_bio8 wc_bio13 wc_bio14 wc_bio15

Eburia 
brevispinis

0.5 0 0 0 4.8 0 0 7.8 0 0 87 0

E. laticollis 0 27.4 0 25.7 0 0 0 1.9 0 0.3 11.3 33.4
E. nigrovittata 0 0 0 26.5 0 0 0 10.4 0 2 13.5 47.6
Susuacanga 
stigmatica

0 50.2 0 2.7 0 0 0 35.9 1.5 9.8 0 0

S. ulkei 0.1 25.8 0 0 0.1 2.2 0 0 13.8 0 44.9 13.2
Euderces 
auricaudus

0 30.7 0 0 0 15.3 0 53.1 0.5 0 0.4 0

E. batesi 0.5 24.2 0 0 0 35.1 1.8 19.8 0.3 15.4 3 0
Lagocheirus 
araneiformis 
ypsilon

0.3 0.1 5.5 0 1.7 0 0.1 70.8 0 21.1 0 0.4

L. binumeratus 7.9 0.7 0 0 0 0.3 0.1 17.5 0 73.4 0 0
L. obsoletus 0 1.2 2.9 1 0 6.1 0 15.3 0 46.4 16.2 10.9
L. procerus 0 4.7 0 1.4 6.5 0 0 1.8 0.4 13.1 60.8 11.4
Mecas 
obereoides

0 0 0 2.2 0 0 0 15.3 0 37.3 1.6 43.5

Dylobolus 
rotundicollis

0 27.1 10.3 0 0 0 0 20.3 1.1 22.6 18.5 0

Neocompsa 
alacris

0 1.9 10.7 5.3 0 0 0 5.6 0 3.6 2.1 70.7

N. puncticollis 
asperula

7 0 0 0 2 0 0 4.7 0 3.3 4.4 78.6

Phaea 
acromela

3.3 0 0 0 0 0.2 0 0 0 2.4 94.2 0

P. tenuata 2.4 6.3 0.5 0 0 38.5 0 3.4 0 43.4 2 3.5
Psyrassa 
basicornis

0 26.6 0 5.3 0.1 16.5 0 44.5 1.6 5.3 0.1 0

P. cylindricollis 1 9 0.6 0 0 0 0.1 3 0 7.8 2.1 76.3
P. sthenias 2.4 0.6 0 0 0 35.5 0 20.7 0 4.5 17.2 19.1
Sphaenothecus 
trilineatus

0 0 0.4 0.2 0 14.4 0 27 0 25.1 20.9 12

Tetraopes 
discoideus

0 41.2 10.5 0 0 16.5 0 1.2 0 24.3 2.3 4.1

T. femoratus 0 59.9 13.9 0 10.5 0 0 0 0 0 2.3 13.4
T. umbonatus 0 0.4 0 0 0 70.1 0 3.5 0 0 0 26

Mean 1.06 14.08 2.30 2.93 1.07 10.45 0.09 15.98 0.80 15.05 16.87 19.34
Median 0.00 3.30 0.00 0.00 0.00 0.10 0.00 9.10 0.00 6.55 2.65 11.15
Standard 
deviation

2.17 18.15 4.35 7.31 2.60 17.81 0.37 18.62 2.81 18.89 27.21 25.63
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variable took the highest preferred values between 0 and 
25-50 mm: Susuacanga ulkei and Lagocheirus procerus 
showed the highest preferred values of 0 mm, Dylobolus 
rotundicollis and Sphaenothecus trilineatus at 3 mm, 
and Eburia brevispinis and Phaea acromela at 25-50 mm 
(Fig. 8).

Finally, the precipitation seasonality (wc_bio15), 
which is the coefficient of variation of precipitation, was 
an important prediction variable whose preferred highest 
values (110) seem similar for this group of species (Fig. 9): 
Eburia laticollis, Eburia nigrovittata, Mecas obereoides, 
Neocompsa alacris, Neocompsa puncticollis asperula, 
and Psyrassa cylindricollis.

A composite map was generated by adding each of 24 
binary species distribution models (Fig.  10). In general, 
species that highly concurred (16-21 spp.) in only 2 very 
confined areas, located in southern Sinaloa and southern 
Oaxaca. On the other hand, large areas with no species 
concurring were in northern Mexico (Fig.  10). This 
richness map was cross-tabulated with the ecoregion 
map to show the biomes associated with the different 
concurring intervals (Fig.  11). Each richness interval 
was tabulated for different ecoregions, showing that the 
highest range (16-21 spp.) corresponded to the tropical 
dry forest in 75% and the tropical humid forest in 24%. 
The second highest interval (11-15 spp.) corresponded 
again to the tropical dry forest (69%), but this time, the 
temperate mountains were in the second place with 17%, 
and the tropical humid forest with 14%. On the other hand, 
the areas with no species concurrence corresponded to 
the North American Desert (45%), followed by the Great 
Plains (21%), temperate mountains (12%), and semi-desert 
(11%). The tropical dry forest occupied 8% of such areas 
with no species concurrence, while the tropical humid 
forest occupied only 0.2%.

Discussion

Considering the original number of records included 
in the databases (> 10,000) along with the localities, 
both georeferenced and without geographic coordinates, 
and the number of species, there was the expectation to 
obtain a database with a significant number of species and 
records. However, there existed a very limited number 
of species (24) with enough records (≥ 20) to be used 
in modeling species potential distribution. In fact, the 
species with ≥ 5 and < 20 records were also limited 
(124), and the bulk of species (266) had < 5 records 
(Supplementary material: A2). It is evident that extensive 
taxonomic fieldwork is necessary to document the species 
diversity of Cerambycidae in Mexico. In this regard, and 
apparently supporting this pattern of records, 7.4% of the 
species recorded in Mexico have no locality records in the 
country, 45.5% have been recorded in only one state, and 
16% in 2 states. This means that nearly 69% of the species 
have either a restricted distribution or are poorly studied 
in terms of their distribution (F. A. Noguera, unpublished 
data).

By mapping the geographic location of Cerambycidae 
species records in Mexico, it is noteworthy that the 
sampling intensity does not necessarily reflect the 
intensity of sampling, as the information included 
primarily corresponds to taxonomically studied groups 

Table 4
Partial ROC results for modeled species.

Species Mean AUC 
ratio

Mean partial 
AUC

Eburia brevispinis 1.884237 0.9420767
E. laticollis 1.857125 0.9285514
E. nigrovittata 1.939383 0.9696851
Susuacanga stigmatica 1.738087 0.869013
S. ulkei 1.512725 0.7563525
Euderces auricaudus 1.822893 0.9114264
E. batesi 1.972096 0.9860455
Lagocheirus araneiformis ypsilon 1.789459 0.8944192
L. binumeratus 1.909858 0.9549165
L. obsoletus 1.772241 0.886116
L. procerus 1.749532 0.8747619
Mecas obereoides 1.767577 0.8837588
Dylobolus rotundicollis 1.664294 0.8320284
Neocompsa alacris 1.938096 0.9690422
N. puncticollis asperula 1.883306 0.9416244
Phaea acromela 1.866931 0.9334454
P. tenuata 1.776351 0.888124
Psyrassa basicornis 1.871859 0.9359075
P. cylindricollis 1.919474 0.9597301
P. sthenias 1.921234 0.9606008
Sphaenothecus trilineatus 1.876181 0.9380483
Tetraopes discoideus 1.680489 0.8401879
T. femoratus 1.815506 0.907635
T. umbonatus 1.707098 0.8535488
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rather than studies aimed at documenting the diversity of 
the different regions of the country, and sampling gaps 
are revealed by state and ecoregion across the country. In 
fact, the map somewhat confirms the current knowledge 
about the diversity of this group in the various states of 
the republic (Martínez-Hernández et al., 2024; Noguera, 
2014; Noguera unpublished data). For example, in fact, 
565 species have been recorded in Oaxaca, 485 in 
Veracruz, 435 in Chiapas, 397 in Jalisco, 283 in Guerrero, 
and 216 in Morelos —states with the highest number of 
records included in the study. In contrast, states such 
as Tlaxcala (10 species), Campeche (11), Aguascalientes 
(12), Tabasco (21), Zacatecas (26), Guanajuato (33), 
Coahuila (35), Mexico City (36), Nuevo León (69), and 
Chihuahua (73) recorded the fewest species in this study.  
In the ≥ 20 records per species group, the most sampled 
biome was the tropical dry forest (348 records and 23 
species), while the temperate forests included 21 species 
with 140 records. 

The 24 species distribution models primarily 
represent examples of this family’s species that are better 
sampled in the country. Different from relying on a 
single prediction algorithm, this study presents consensus 
models, generated from combining probability versions 

of 4 algorithms: Maxent, Artificial Neural Networks, 
Generalized Linear Model, and Support Vector Machine. 
The median was the statistic chosen for combining the 4 
algorithms because of its characteristic of being a location 
parameter in contrast with the mean, which combines in-
depth partial values, and is affected by outliers. Although 
the variations among models for the same species were 
evident, all 24 species distribution models showed good 
performance, as indicated by the AUC ratios and partial 
AUC values.

According to Maxent, prediction variables differed in 
importance for predicting species potential distribution 
models. The variables that had higher mean importance 
among species included precipitation seasonality 
(wc_bio15), precipitation of driest month (wc_bio14), 
temperature annual range (wc_bio7), precipitation of wettest 
month (wc_bio13), elevation, and isothermality (wc_bio3). 
As in this case, other studies on Cerambycidae, where 
the potential distribution of some species in this group 
was modeled, also showed that the predictive bioclimatic 
variables were diverse and contributed to the models to 
varying degrees. For example, for Psacothea hilaris, the 
predictive variables were precipitation of the warmest 
quarter (wc_bio18) and isothermality (wc_bio3) (Ruzzier 

Figure 5. Isothermality of species distribution models for which Maxent identified such variables as important (0-35%) in model 
prediction.
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Figure 6. The temperature annual range of species distribution models for which Maxent identified such a variable as important 
(20-71%) in model prediction.
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Figure 7. Precipitation of the wettest month of species distribution models for which Maxent identified such variable as important 
(21-73%) in model prediction.
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et al., 2024); for Rosalia alpina, they were elevation and 
mean temperature of the driest quarter (wc_bio9) (Bosso 
et al., 2018); for Morimus asper, they were the maximum 
temperature during the warmest month (wc_bio5) and 
altitude (Kostova et  al., 2023); for Batocera lineolata, 
they were maximum temperature in January, precipitation 
in July, and temperature seasonality (wc_bio4) (Li et al., 
2020); for Xylotrechus arvicola, they were precipitation 
in October, mean maximum temperature in January, 
mean minimum temperature in July, mean maximum 
temperature, and mean minimum temperature in August 
(Felicísimo et  al., 2021); for Monochamus carolinensis, 
they were precipitation of the warmest quarter (wc_bio18), 
precipitation seasonality (wc_bio15), precipitation of the 

coldest quarter (wc_bio19), mean diurnal range (wc_bio2), 
and minimum temperature of the coldest month (wc_bio5) 
(Zhao et  al., 2023). This recorded variety in predictive 
environmental variables corresponds to the region where 
each of these studies was conducted. For P. hilaris, the 
main areas were Italy and the Mediterranean region; for 
R. alpina, it was Europe; for M. asper, it was Bulgaria; for 
B. lineolata, it was China; for X. arvicola, it was Spain; 
and for M. carolinensis, it was on a global scale.

The response variables obtained by cross-tabulating 
the species presence models with the environmental 
(prediction) variables identify the most favorable habitat 
conditions, according to the predicted distribution 
models. Even though the most frequent values of the 

Figure 8. Precipitation of driest month of species distribution models for which Maxent identified such variable as important (19-
94%) in model prediction.
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environmental variables indicate which areas dominated 
the species distribution, the range of such values provides 
an estimate of the span of environmental values where 
species can occur. 

The 24 modeled species showed spatial correspondence, 
where the highest interval (16-21 species) is confined to 
restricted areas with tropical and humid tropical forests 

in the country. Larger species spatial correspondence 
areas corresponded to the lowest intervals (1-5 and 6-10 
species), which were distributed in the tropical dry forest 
and temperate forests. It is worth mentioning that biomes 
such as the North American deserts and the Great Plains 
showed the highest proportion of areas with the absence 
of species. 

Figure 9. Precipitation seasonality of species distribution models for which Maxent identified such variable as important (33-79%) 
in model prediction.
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Figure 10. Species richness model of 24 Cerambycidae species in México.

Figure 11. Proportions of species richness by ecoregion (richness class in ecoregion/ richness class total area in all ecoregions) in 
México.
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