Manejo y aprovechamiento de recursos
Morfología de racimos, frutos y semillas de Attalea moorei en el Huallaga Central, Perú
Diego Alonso Sinti-Pinedo a, b, E. Hanz Rodríguez-Cabrera a, Ires Paula A. Miranda c, Jenny Rojas-Fox d, Kember Mejía a, Juana Elizabeth Vásquez-Vásquez b y Ángel Martín R. del Castillo a, *
a Instituto de Investigaciones de la Amazonia Peruana – San Martín, Laboratorio de Botánica Aplicada Jean-Christophe Pintaud, Jr. Belén Torres de Tello 135, Morales, 22202 Tarapoto, Perú
b Universidad Peruana Unión, Facultad de Ingeniería y Arquitectura, Escuela de Ingeniería Ambiental, Jr. Los Mártires 340, Morales, 22202 Tarapoto, Perú
c Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, 69067 Manaos, Amazonas, Brasil
d Universidad Nacional Mayor de San Marcos, Museo de Historia Natural, Av. Gral. Antonio Álvarez de Arenales 1256, Jesús María, 15072 Lima, Perú
*Autor para correspondencia: arodriguez@iiap.gob.pe (Á.M.R. del Castillo)
Recibido: 8 junio 2023; aceptado: 5 marzo, 2024
Resumen
Las especies del género Attalea no cuentan con estudios suficientes sobre variabilidad morfológica en la Amazonía occidental. El objetivo del presente estudio fue describir y determinar la variabilidad morfológica de los racimos, frutos y semillas de Attalea moorei de 3 poblaciones de bosques estacionalmente secos de la cuenca central del río Huallaga, Perú. Se evaluaron 20 características de interés que fueron analizadas y comparadas por medio de las pruebas de Anova y Kruskal-Wallis, se visualizaron gráficamente mediante el análisis de componentes principales y se estimó la asociación de las características a través del análisis de Spearman. De las 20 características, 16 presentaron diferencias significativas. El PCA demostró la alta variación de los caracteres y la variabilidad entre las poblaciones, donde Lamas fue la más diferenciada con racimos y semillas de mayores dimensiones, mientras que las de Pucacaca y San Pedro presentaron frutos de mayor tamaño y peso. Las correlaciones relevantes se dieron entre el número de frutos/peso del racimo (0.857), peso del fruto/longitud del fruto (0.824) y diámetro de semilla/longitud de semilla (0.358), las cuales podrían tener un potencial para la producción de biocombustibles y la extracción de aceites.
Palabras clave: Amazonía occidental; Bosque estacionalmente seco; Caracterización; Shapaja; Variabilidad
© 2024 Universidad Nacional Autónoma de México, Instituto de Biología. Este es un artículo Open Access bajo la licencia CC BY-NC-ND
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Morphology of racemes, fruits and seeds of Attalea moorei in the Central Huallaga, Peru
Abstract
The species of the genus Attalea do not have sufficient studies on morphological variability in the Western Amazonía. The aim of this study was to describe and determine the morphological variability of racemes, fruits and seeds of Attalea moorei of 3 populations of seasonally dry forests of the central basin of the Huallaga River, Peru. We evaluated 20 characteristics of interest that were analyzed and compared using the ANOVA and Kruskal-Wallis tests; they were graphically visualized by the principal component analysis and the association of characteristics was estimated through Spearman’s analysis. Of the 20 characteristics, 16 showed significant differences. The PCA showed a high variation of characteristics and variability between populations, where Lamas was the most differentiated with racimes and seeds of greater dimensions, while Pucacaca and San Pedro presented fruits of greater size and weight. The most relevant correlations were between the number of fruits/weight of the racime (0.857), weight of the fruit/length of the fruit (0.824) and seed diameter/seed length (0.358), which could have a potential for the production of biofuel and in the extraction of oils.
Keywords: Western Amazon; Seasonally dry forest; Characterization; Shapaja; Variability
Introducción
La familia Arecaceae comprende 2,600 especies en 181 géneros distribuidas en las regiones tropicales y subtropicales. El 90% de las especies están bien adaptadas al bosque húmedo tropical (Baker y Dransfield, 2016; Barfod et al., 2011; Couvreur et al., 2011), y algunos grupos como Attalea, Butia, Coccothrinax, Copernicia, Sabal y Syagrus se han adaptado a ecosistemas con algún nivel de aridez (Cássia-Silva et al., 2019; Salm et al., 2005). En Sudamérica, aproximadamente 130 especies crecen en ambientes caracterizados por un estrés hídrico temporal o permanente (Mejía et al., 2014).
La subtribu Attaleinae es un grupo de palmeras uniformes respecto a sus características vegetativas y considerablemente polimórfica en sus estructuras reproductivas (Higuti et al., 1994). Entre los 8 grupos de esta subtribu, el género Attalea es uno de los más notables en el neotrópico y se distribuye desde las dunas de arena costera, bosques premontanos y montanos, bosques tropicales secos tipo sabana, bosques estacionalmente secos, matorrales costeros tropicales, hasta bosques tropicales muy húmedos (Mejía et al., 2014; Pintaud et al., 2008). Son frecuentes en la vegetación secundaria y los bosques estacionalmente inundados, en pantanos y diversos ecosistemas (Miranda y Rabelo, 2008; Miranda et al., 2003; Moraes y Zenteno-Ruiz, 2017).
El género Attalea cuenta con 56 especies distribuidas en América del Sur, de las cuales 16 se encuentran en la Amazonía occidental (Pintaud, 2008; Del-Castillo et al., 2018). Al igual que el resto de las palmeras, las especies de Attalea poseen gran importancia económica y cultural para las comunidades locales (Albán et al., 2008; Balslev et al., 2008). El aceite de las semillas se utiliza en la producción de cosméticos y medicamentos contra la hepatitis; las hojas de algunas especies son utilizadas en ceremonias religiosas y el techado de las viviendas rurales; ciertos frutos se emplean en la producción de etanol y azúcar, y algunas semillas se usan para la producción de aceite de palma (Anderson et al., 1991; Balslev et al., 2008; Galeano y Bernal, 2010).
La Amazonía peruana viene pasando por un proceso acelerado de cambio en la cobertura de los bosques causado por la expansión agrícola y las actividades extractivistas (Gárate-Quispe et al., 2021; Nicolau et al., 2019). En esta región, Attalea moorei (Glassman) Zona es conocida bajo el nombre de “shapaja” (Del-Castillo et al., 2018; Pintaud et al., 2016), siendo una palmera de hasta 15 m que está adaptada a bosques estacionalmente secos, matorrales secos, bosques secos interandinos, bosques de terraza altas y zonas perturbadas (Ferreira, 2005; Glassman, 1999; Mejía et al., 2014; Del-Castillo et al., 2018).
Las comunidades rurales conservan a la shapaja para dar sombra al ganado en los pastizales; utilizan el tronco como poste de las casas; las hojas también sirven para la construcción de techos y ocasionalmente con fines decorativos, cuando son tiernas se emplean para la confección de diferentes utensilios; la bráctea peduncular se utiliza como batea; los frutos maduros se recolectan para el consumo crudo o asado; las semillas se consumen crudas o cocidas, además de que de ellas se extraen aceites con fines medicinales y para su aplicación en el cabello (Balslev et al., 2008; Paniagua et al., 2014a, b; Paniagua, Bussmann, Vega et al., 2014; como Attalea phalerata Mart. ex Spreng.). Asimismo, las semillas de esta especie presentan altas concentraciones de ácidos grasos saturados (ácido láurico y mirístico), que pueden ser impulsados como una alternativa en los pueblos amazónicos para el aprovechamiento en la industria de aceites con fines medicinales, cosméticos y como biocombustible (Dávila et al., 2011; Miranda, 2014; Sotero et al., 2010).
La caracterización de racimos, frutos y semillas es una herramienta importante que facilita información para detectar la variabilidad entre poblaciones, ayuda a corroborar los rasgos fenotípicos relacionados con los factores ambientales (Gonçalves et al., 2013; Matos et al., 2017; Neto y Ferreira, 2014) y permite establecer planes de conservación y manejo mediante técnicas adecuadas para posteriores cultivos comerciales (Dionisio et al., 2018; Sanjinez-Argandoña y Chuba, 2011). Los datos biométricos de los frutos sirven de bioindicadores y se utilizan para la predicción del rendimiento de la palmera. Se considera que los frutos más grandes poseen capas del pericarpo más gruesas, una mayor cantidad de semillas o semillas más grandes, lo que los hace más adecuados para la explotación como materia prima (Vanderlei et al., 2019).
La finalidad de esta investigación fue describir las características morfológicas de los racimos, frutos y semillas de A. moorei que crecen en los bosques estacionalmente secos de la cuenca central del río Huallaga, en la región San Martín (Perú), y determinar la variabilidad interpoblacional para la selección de características útiles para el aprovechamiento sostenible, aplicar planes de manejo, que en última instancia, puedan contribuir a reducir la deforestación.
Materiales y métodos
La zona de estudio está ubicada en la cuenca central del río Huallaga, en la Amazonía peruana. Las recolecciones se realizaron en las subcuencas que pertenecen a los siguientes distritos: Lamas (6°24’4” S, 76°32’35” O, 689 m snm), que se ubica en las laderas del margen derecho del río Mayo y donde predominan los bosques secos tropicales (300-600 m), bosques húmedos subtropicales (600-1,200 m), y fragmentos de bosques secundarios como consecuencia del abandono de chacras y áreas deforestadas (Schellerup et al., 2001); Pucacaca (6°50’56” S, 76°27’47” O, 356 m snm), que se encuentra sobre bosques estacionalmente secos de la cuenca del río Pucacaca y presenta una cobertura vegetal de bosque de montaña (300-800 m) con pendientes de 25-50%, estando amenazado por el cultivo de maíz amarillo que abastecen a plantas agroindustriales de la zona (RDE N° 004-2019-MINAGRI-SERFOR, 2019); San Pedro de Cumbaza (6°25’25” S, 76°24’2” O, 442 m snm), que se encuentra atravesado por el río Cumbaza y se caracteriza por suelos derivados de material calcáreo relativamente fértiles en bosques secos tropicales, bosques transicionales y bosques húmedos premontanos tropicales, los cuales están siendo reemplazados por hábitats fragmentados y por chacras con fines agrícolas y ganaderos (Goresam y Pehcbm, 2010) (fig. 1). Las localidades fueron elegidas por la presencia de conspicuos rodales de A. moorei denominados “shapajales”, los cuales están atravesando un proceso de cambio de nicho ecológico y se están adaptando al bosque tropical estacionalmente seco (BTES) (Mejía et al., 2014).
La recolección de las infrutescencias se hizo de manera aleatoria por conveniencia, considerando una distancia de 10 m entre los individuos. Se recolectó un racimo por palmera, obteniendo 5 racimos por cada localidad, siendo un total de 15. De cada infrutescencia, se escogieron aleatoriamente 20 frutos y semillas entre la parte basal, medial y apical que estuvieran en buen estado.
Para la evaluación morfológica se seleccionaron 20 características de la guía elaborada para el género Attalea de J.C. Pintaud (com. pers.), relacionados a las estructuras del racimo, fruto y semilla (tabla 1). Para efectuar las mediciones se emplearon una cinta métrica y un vernier digital, y para el peso, se empleó una balanza romana y una balanza electrónica.
Los datos se analizaron a través del uso de estadística descriptiva para obtener la media, la desviación estándar, mínimo y máximo, y el coeficiente de variación. Las 20 características medidas fueron sometidas a pruebas de normalidad de Shapiro-Wilk (racimos: n = 15) (Alcudia-Aguilar et al., 2016) y Kolmogorov-Smirnov (frutos y semillas: n = 300) (Araújo y Lopes, 2012). La homogeneidad de varianza fue analizada mediante la prueba de Levene (da Cunha et al., 2020).
Para comparar la variabilidad de las características entre las poblaciones se empleó la prueba de Anova (Pérez-Vásquez et al., 2015), para datos con distribución normal. En caso contrario, se empleó la prueba de Kruskal-Wallis para datos sin distribución normal (Costa et al., 2009). En los análisis se utilizó un nivel de confianza del 95% (α = 0.05). La variación de las características, la variabilidad de las poblaciones y el comportamiento de los datos fueron proyectados mediante el análisis de componentes principales (PCA) (Aspajo et al., 2008). Finalmente, se empleó el análisis de correlación de Spearman para estimar la relación entre las características (Jiménez-Morera y García, 2020). Los análisis estadísticos fueron realizados a través del programa RStudio ver. 2021.09.0+351 (RStudio Team, 2021).
Resultados
Los racimos evaluados de A. moorei presentan una longitud de bráctea peduncular sin punta de 110-180 cm, espesor de bráctea peduncular 2.07-2.59 cm, longitud de la punta 21-39 cm; el pedúnculo presenta una longitud de 31-104 cm; el raquis tiene una longitud de 48-86 cm; número de raquillas 201-377; peso del racimo 36.94-58.51 kg; número de frutos 223-392 (fig. 2).

Figura 1. Localidades de recolección de las muestras de A. moorei.
Tabla 1
Características evaluadas de los racimos, frutos y semillas de A. moorei (basado en Pintaud, com.pers.).
| Núm. | Órgano | Característica | Abreviatura |
| 1 | Profilo peduncular | Longitud sin la punta apical (cm) | LBr |
| 2 | Espesor (cm) | EBr | |
| 3 | Longitud de la punta (cm) | LPBr | |
| 4 | Pedúnculo | Longitud (cm) | LPe |
| 5 | Raquis | Longitud (cm) | LRaq |
| 6 | Raquillas | Número total (n) | NRaq |
| 7 | Racimo | Pesto total (kg) | PRac |
| 8 | Número de frutos (n) | NFr | |
| 9 | Exocarpo | Espesor (mm) | EEx |
| 10 | Mesocarpo | Espesor (mm) | EMe |
| 11 | Endocarpo | Longitud (cm) | LEn |
| 12 | Diámetro (cm) | DEn | |
| 13 | Espesor de las fibras (mm) | EFEn | |
| 14 | Fruto | Longitud (cm) | LFr |
| 15 | Diámetro (cm) | DFr | |
| 16 | Peso (g) | PFr | |
| 17 | Semilla | Número de semillas por fruto (n) | NSem |
| 18 | Peso medio (g) | PMSem | |
| 29 | Longitud (cm) | LSem | |
| 20 | Diámetro medial (mm) | DSem |

Figura 2. Racimos de A. moorei. Se observa que los frutos se compactan entre sí.

Figura 3. Frutos variables de A. moorei. Los frutos son angulados, pequeños o alargados.
Los frutos son drupas alargadas y anguladas debido a su compactación durante su crecimiento (fig. 3); el espesor del exocarpo es de 1.01-2.10 mm; espesor del mesocarpo 1.41-3.77 mm; longitud del endocarpo 5.52-7.29 cm y diámetro de 2.70-5.1 cm, espesor de las fibras del endocarpo 1.91-2.89 mm; longitud del fruto 7.98-10.98 cm y diámetro de 3.48-4.52 cm, peso del fruto de 79.79-212.28 g; número de semillas por fruto 2-5, longitud de la semilla de 1.02-4.42 cm y diámetro de 3.01-8.27 mm, peso de la semilla 1.06-5.48 g (fig. 4).

Figura 4. Corte transversal de los frutos. Se observa un mesocarpo parenquimatoso seco, un endocarpo duro con pequeños grupos de fibras dispuestas alrededor de las semillas.
La media, la desviación estándar, mínimo y máximo, y el coeficiente de variación de las características evaluadas en los 15 racimos de A. moorei son mostradas en la tabla 2. La mayor variación se observó en Pucacaca para las características de longitud de bráctea peduncular (LBr) (21.64%) y longitud de la bráctea peduncular (LPe) (34.81%). La comparación de medias entre localidades demuestra diferencia significativa (p < 0.05) en el espesor de la bráctea peduncular (EBr), longitud de la punta de la bráctea peduncular (LPBr), longitud del pedúnculo (LPe), número de raquillas (NRaq), peso del racimo (PRac) y número de frutos (NFr).
En la tabla 3 se muestran los valores de la media, la desviación estándar, mínimo y máximo, y el coeficiente de variación de las características evaluadas en 300 frutos de A. moorei. La mayor variación se observó en el espesor del exocarpo (EEx) para Pucacaca (25.39%) y San Pedro (20.42%). La comparación de medias demuestra que todas las características de los frutos presentaron diferencias significativas (p < 0.05).
Tabla 2
Datos comparativos de características evaluadas para 15 racimos de A. moorei.
| Característica | Lamas | Pucacaca | San Pedro | Comparación | ||||||
| x + DS | mín.-máx. | CV (%) | x + DS | mín.-máx. | CV (%) | x + DS | mín.-máx. | CV (%) | ||
| LBr | 153 + 15.15 | 135-172 | 9.90 | 130.6 + 28.26 | 110-180 | 21.64 | 142.4 + 10.33 | 125-151 | 7.26 | 0.187 |
| EBr | 2.46 + 0.15 | 2.23-2.59 | 5.90 | 2.27 + 0.11 | 2.18-2.46 | 4.93 | 2.24 + 0.14 | 2.07-2.45 | 6.14 | 0.043* |
| LPBr | 37.6 + 1.52 | 35-39 | 4.03 | 29.8 + 6.3 | 21-38 | 21.14 | 31.2 + 2.95 | 27-34 | 9.45 | 0.020* |
| LPe | 50.8 + 1.64 | 49-53 | 3.23 | 72.4 + 25.21 | 31-97 | 34.81 | 95.4 + 5.64 | 90-104 | 5.91 | 0.0018** |
| LRaq | 68.4 + 12.42 | 50-82 | 18.16 | 62.4 + 13.54 | 53-86 | 21.7 | 52.2 + 3.49 | 48-57 | 6.69 | 0.077 |
| NRaq | 355 + 13.4 | 342-377 | 3.77 | 257.4 + 53.97 | 210-316 | 20.97 | 291.4 + 24.42 | 259-315 | 8.38 | 0.003** |
| PRac | 55.83 + 2.25 | 53.92-58.51 | 4.04 | 42.90 + 7.86 | 36-94-55.96 | 18.33 | 48.29 + 5.3 | 40.23-54.45 | 10.98 | 0.044* |
| NFr | 372.8 + 15.25 | 357-392 | 4.09 | 256.8 + 45.05 | 223-330 | 17.54 | 312.6 + 25.28 | 279-334 | 8.09 | 0.0002*** |
* = p < 0.05; ** = p < 0.01; *** = p < 0.001.
Tabla 3
Datos comparativos de características evaluadas para 300 frutos de A. moorei.
| Característica | Lamas | Pucacaca | San Pedro | Comparación | ||||||
| x + DS | mín.-máx. | CV (%) | x + DS | mín.-máx. | CV (%) | x + DS | mín.-máx. | CV (%) | ||
| EEx | 1.66 + 0.18 | 1.22-1.98 | 10.67 | 1.23 + 0.31 | 1.04-2.1 | 25.39 | 1.42 + 0.29 | 1.01-1.97 | 20.42 | 2.2 e-16*** |
| EMe | 1.85 + 0.36 | 1.41-2.4 | 19.20 | 2.88 + 0.48 | 1.95-3.76 | 16.79 | 2.96 + 0.48 | 1.95-3.77 | 16.15 | 2.2 e-16*** |
| LEn | 6.35 + 0.27 | 5.52-6.9 | 4.29 | 6.77 + 0.25 | 6.09-7.29 | 3.76 | 6.77 + 0.32 | 6.3-7.2 | 4.70 | 2.2 e-16*** |
| DEn | 3.53 + 0.20 | 2.87-3.95 | 5.79 | 3.32 + 0.31 | 2.7-3.94 | 9.42 | 3.56 + 0.43 | 2.8-5.1 | 11.96 | 2.137 e-6*** |
| EFEn | 2.53 + 0.23 | 1.91-2.89 | 8.92 | 2.35 + 0.22 | 2.02-2.87 | 9.24 | 2.43 + 0.3 | 1.92-2.89 | 12.24 | 3.141 e-6*** |
| LFr | 8.91 + 0.54 | 7.98-10.18 | 6.06 | 9.44 + 0.63 | 8.14-10.98 | 6.7 | 9.49 + 0.68 | 8.16-10.71 | 7.12 | 1.684 e-11*** |
| DFr | 3.89 + 0.21 | 3.48-4.47 | 5.38 | 4.01 + 0.28 | 3.48-4.52 | 6.89 | 4.01 + 0.25 | 3.53-4.5 | 6.32 | 0.001** |
| PFr | 149.79 + 18.71 | 114.12-188.19 | 12.49 | 166.95 + 20.72 | 116.53-212.28 | 12.41 | 154.56 + 29.44 | 79.79-209.26 | 19.04 | 1.181 e-6*** |
** = p < 0.01; *** = p < 0.001.
Tabla 4
Datos comparativos de características evaluadas para 300 semillas de A. moorei.
| Característica | Lamas | Pucacaca | San Pedro | Comparación | ||||||
| x + DS | mín.-máx. | CV (%) | x + DS | mín.-máx. | CV (%) | x + DS | mín.-máx. | CV (%) | ||
| PMSem | 2.66 + 0.78 | 1.22-4.92 | 29.44 | 2.7 + 0.77 | 1.06 – 5.12 | 28.58 | 2.74 + 0.76 | 1.45-5.48 | 27.93 | 0.886 |
| LSem | 3.53 + 0.51 | 1.02-4.42 | 14.50 | 3.03 + 0.13 | 2.81-3.3 | 4.23 | 3.02 + 0.15 | 2.09-3.39 | 4.81 | 2.2 e-16*** |
| DSem | 6.18 + 0.75 | 3.01-8.08 | 12.13 | 5.42 + 0.86 | 3.07-8.27 | 15.81 | 5.05 + 0.77 | 3.89-6.88 | 15.21 | 2.2 e-16*** |
| NSem | 3.76 + 0.88 | 2-5 | 23.34 | 3.86 + 0.88 | 2-5 | 22.70 | 3.85 + 0.82 | 2-5 | 21.33 | 0.590 |
** = p < 0.01; *** = p < 0.001.
Tabla 5
Varianza y 2 primeros componentes para establecer los vectores de las características de los racimos.
| Característica | PC1 | PC2 |
| LBr | -0.295 | 0.484 |
| EBr | -0.360 | 0.484 |
| LPBr | -0.360 | 0.411 |
| LPe | 0.250 | -0.183 |
| LRaq | -0.308 | -0.195 |
| NRaq | -0.417 | -0.299 |
| PRac | -0.375 | -0.427 |
| NFr | -0.426 | 0.313 |
| % de la varianza | 51.24% | 19.33% |
| % acumulada | 51.24% | 70.57% |
Los valores de la media, la desviación estándar, mínimo y máximo, y el coeficiente de variación de las características evaluadas en 300 semillas de A. moorei se muestran en la tabla 4. La mayor variación se observó en el peso medio de las semillas (PMSem) para Lamas (29.44%) y San Pedro (27.93%). La comparación de medias determinó que la longitud (LSem) y diámetro de la semilla (DSem) presentaron diferencias significativas (p < 0.05).
El PCA de los racimos resumió 70.57% de la varianza (tabla 5). Se observa una alta variación en todas las características, a excepción de la longitud del pedúnculo (LPe). Se encontró que San Pedro y Pucacaca presentaron los valores más bajos por la posición contraria de sus puntos respecto a la dirección de las flechas, siendo esta última la de mayor variación. También se encontró que Lamas presentó los valores más altos en sus características debido a la asociación de sus puntos con las flechas (fig. 5).

Figura 5. Análisis de componentes principales, variación de las características y de las poblaciones según los racimos de A. moorei.
Tabla 6
Varianza y 2 primeros componentes para establecer los vectores de las características de los frutos.
| Característica | PC1 | PC2 |
| EEx | -0.297 | -0.188 |
| EMe | 0.393 | 0.271 |
| LEn | 0.420 | 0.171 |
| DEn | -0.295 | 0.550 |
| EFEn | -0.162 | -0.121 |
| LFr | 0.469 | 0.086 |
| DFr | 0.017 | 0.674 |
| PFr | 0.497 | -0.289 |
| % de la varianza | 32.88% | 18.21% |
| % acumulada | 32.88% | 51.09% |
El PCA de los frutos resumió 51.09% de la varianza (tabla 6). Se observa una alta variación en todas las características, menos en espesor del exocarpo (EEx) y el espesor de las fibras del endocarpo (EFEn). Pucacaca y San Pedro presentaron los valores más altos en las características de diámetro del fruto (DFr), espesor del mesocarpo (EMe), longitud del endocarpo (LEn), longitud del fruto (LFr) y peso del fruto (PFr). Mientras que Lamas presenta los valores más altos para las características del espesor del exocarpo (EEx) y espesor de las fibras del endocarpo (EFE). Asimismo, se observa la variabilidad en las localidades, teniendo a San Pedro como la de mayor variación, y a Lamas como la de menor variación (fig. 6).

Figura 6. Análisis de componentes principales, variación de las características y de las poblaciones según los frutos de A. moorei.
El PCA de las semillas resumió 59.38% de la varianza (tabla 7). Se demostró una alta variación en el diámetro de la semilla (DSem) y la longitud de esta (LSem), siendo Lamas la que presenta los valores más altos para estas características. Asimismo, se observó que existe una variabilidad similar entre las 3 localidades (fig. 7).

Figura 7. Análisis de componentes principales, variación de las características y de las poblaciones según las semillas de A. moorei.
Los valores obtenidos de la correlación de Spearman para los racimos (tabla 8), indicó la asociación directa y significativa entre el espesor de profilo (EBr)/longitud de la bráctea peduncular (LBr) (0.617), longitud de la punta de profilo (LPBr)/longitud de profilo (LBr) (0.638), longitud de la punta de la bráctea peduncular (LPBr)/espesor de la bráctea peduncular (EBr) (0.681), longitud de la punta de la bráctea peduncular (LPBr)/número de raquillas (NRaq) (0.560), longitud de la punta de la bráctea peduncular (LPBr)/número de frutos (NFr) (0.575), peso del racimo (PRac)/número de raquillas (NRaq) (0.720), número de frutos (NFr)/número de raquillas (NRaq) (0.874) y número de frutos (NFr)/peso del racimo (PRac) (0.857).
Los valores obtenidos de la correlación de Spearman para los frutos (tabla 9), mostraron asociaciones significativas directas e inversas. Las relaciones directas más altas se dieron entre el peso del fruto (PFr)/longitud del fruto (LFr) (0.824) y longitud del fruto (LFr)/longitud del endocarpo (LEn) (0.485). Mientras que las relaciones inversas más altas se dieron entre peso del fruto (PFr)/diámetro del endocarpo (Den) (-0.491) y espesor del exocarpo (EEx)/espesor del mesocarpo (EMe) (-0.334).
Tabla 8
Correlación de Spearman para las características de los racimos de A. moorei.
| LBr | EBr | LPBr | LPe | LRaq | NRaq | PRac | NFr | |
| LBr | 1 | |||||||
| EBr | 0.617* | 1 | ||||||
| LPBr | 0.638* | 0.681** | 1 | |||||
| LPe | -0.086 | -0.245 | -0.423 | 1 | ||||
| LRaq | 0.050 | 0.389 | 0.220 | -0.302 | 1 | |||
| NRaq | 0.181 | 0.309 | 0.560* | -0.497 | 0.470 | 1 | ||
| PRac | 0.286 | 0.177 | 0.346 | -0.130 | 0.451 | 0.720** | 1 | |
| NFr | 0.315 | 0.391 | 0.575* | -0.248 | 0.390 | 0.874*** | 0.857*** | 1 |
* = p < 0.05; ** = p < 0.01; *** = p < 0.001
Tabla 9
Correlación de Spearman para las características de los frutos de A. moorei.
| EEx | EMe | LEn | DEn | EFEn | LFr | DFr | PFr | |
| EEx | 1 | |||||||
| EMe | -0.334*** | 1 | ||||||
| LEn | -0.195*** | 0.405*** | 1 | |||||
| DEn | 0.198*** | -0.245*** | -0.168** | 1 | ||||
| EFEn | 0.162** | -0.232*** | -0.108 | 0.065 | 1 | |||
| LFr | -0.182** | 0.270*** | 0.485*** | -0.076 | -0.023 | 1 | ||
| DFr | -0.109 | 0.172** | 0.064 | 0.451*** | -0.050 | 0.130* | 1 | |
| PFr | -0.180** | 0.205*** | 0.390*** | -0.491*** | -0.049 | 0.824*** | -0.092 | 1 |
* = p < 0.05; ** = p < 0.01; *** = p < 0.001
Tabla 10
Correlación de Spearman para las características de las semillas de A. moorei.
| PMSem | LSem | DSem | NSem | |
| PMSem | 1 | |||
| LSem | 0.0007 | 1 | ||
| DSem | 0.029 | 0.358*** | 1 | |
| NSem | -0.013 | -0.017 | -0.045 | 1 |
* = p < 0.05; ** = p < 0.01; *** = p < 0.001
Los valores obtenidos de la correlación de Spearman para las semillas (tabla 10) indicaron una asociación directa significativa dada entre el diámetro de la semilla (DSem)/longitud de la semilla (LSem) (0.358).
Discusión
Las infrutescencias del género Attalea crecen entre las hojas, con pedúnculos que pueden ser cortos o largos y están cubiertos por una bráctea peduncular persistente, leñosa, muy gruesa, surcada y grande, que termina en una punta larga. Los frutos son grandes, mayores de 2.99 cm, de forma elipsoide u ovoide, rematados con una punta prominente, presentan mesocarpo fibroso, el endocarpo es grueso y duro, con una a varias semillas homogéneas, siendo la condición común de 2 o 3 (De Nevers, 1987; Galeano y Bernal, 2010; Glassman, 1999; Henderson, 2020; Henderson et al., 1995; Moraes, 2020). En el estudio, A. moorei incluye muchas de las características mencionadas anteriormente, tales como una bráctea peduncular grande, leñosa, gruesa y surcada. Los frutos son grandes pero angulados, el mesocarpo fibroso, endocarpo duro y grueso con fibras que están agrupadas alrededor de las semillas, como lo indicaron también Pintaud et al. (2016). En tal sentido, el apéndice muestra la comparación de las características descritas de los racimos, frutos y semillas de nuestro estudio con otras especies del género Attalea.
En los racimos de A. moorei, la alta variabilidad se corrobora por la diferencia significativa de 6 características (p < 0.05). Asimismo, en otros estudios de caracterización, los racimos de otras palmeras también muestran diferencias fenotípicas y una alta variabilidad, como se ha encontrado para A. bassleriana (Burret) Zona (Rodríguez-Cabrera et al., 2023), A. huebneri (Burret) Zona (Macedo, 2015), A. maripa (Aubl.) Mart. (Carvalho et al., 2007), Mauritia flexuosa L. f. (Freitas et al., 2011), Phytelephas macrocarpa Ruiz et Pav. (Neto y Ferreira, 2014) y Syagrus sancona H. Karst. (Lima y Ferreira, 2017). Por otro lado, el PCA demuestra que San Pedro y Pucacaca presentan los valores más bajos, siendo esta última población la de mayor variabilidad. Estos valores bajos podrían deberse a que ambos lugares de muestreo se encuentran en predios con bosques mejor conservados y manejados, siendo zonas menos intervenidas en comparación con Lamas que se encuentra sobre un área de mayor fragmentación. Este resultado es similar a la caracterización de racimos de P. macrocarpa, donde los racimos presentan tamaños menores en un fragmento de bosque primario y características homogéneas, y de mayor tamaño cuando provienen de un fragmento de bosque secundario, debido a que no se encuentran en competencia con otras especies de plantas por la exposición a la luz y la absorción de nutrientes (Neto y Ferreira, 2014).
La alta variabilidad de los frutos de A. moorei se confirma por la diferencia de todas sus características, de manera que las distintas procedencias demuestran las disimilitudes fenotípicas de los frutos en relación a la variabilidad genética y los factores ambientales (Botezelli et al., 2000), como en este estudio. Otros trabajos de caracterización de frutos de palmeras como: A. bassleriana (Rodríguez-Cabrera et al., 2023), A. huebneri (Macedo, 2015), A. maripa (Carvalho et al., 2007; Matos et al., 2009, 2017; Zuffo et al., 2016), Astrocaryum aculeatum G. Mey (Dionisio et al., 2018), M. flexuosa (Freitas et al., 2011), Oenocarpus bataua Mart. (Felizardo et al., 2015; González et al., 2014), P. macrocarpa (Neto y Ferreira, 2014) y S. sancona (Lima y Ferreira, 2017), también indican las diferencias y una alta variabilidad en sus características debido a las diferentes procedencias de las muestras. En lo que respecta al PCA, se observa una mayor variabilidad y características de mayor tamaño en los frutos de Pucacaca y San Pedro, lo que demuestra ser todo lo contrario con las características encontradas en los racimos. Esta alta variabilidad también se observa en el tamaño de los frutos de Attalea speciosa Mart., donde Mitja et al. (2008) indican que estas diferencias son rasgos que están relacionado con los individuos que se encuentran en estado silvestre.
Para el caso de las semillas de A. moorei, se verifica la variabilidad por la diferencia de las características relacionadas con la longitud y el diámetro. De igual manera, estudios realizados en la caracterización de semillas de especies como: A. bassleriana (Rodríguez-Cabrera et al., 2023), A. huebneri (Macedo, 2015), A. maripa (Carvalho et al., 2007; Matos et al., 2009; Zuffo et al., 2016), A. aculeatum (Dionisio et al., 2018), O. bataua (Felizardo et al., 2015; González et al., 2014), P. macrocarpa (Neto y Ferreira, 2014), Syagrus oleracea (Mart.) Becc. (Azevedo et al., 2014) y S. sancona (Lima y Ferreira, 2017), demuestran ser variables respecto a las características del tamaño. Por otra parte, en el PCA se observa que las semillas de las 3 localidades poseen una alta variación debido al tamaño de cluster que forman. Esta variación puede estar asociada con los pisos altitudinales, donde Lamas se encuentra por encima de Pucacaca y San Pedro, y las diferentes condiciones climáticas relacionadas a los tipos de bosque y a los tipos de suelos donde crece A. moorei. Mitja et al. (2008) también afirman que la mayor variabilidad de las semillas de A. speciosa está relacionada con los factores climáticos y el tipo de suelo, además se trata de una especie que todavía no se encuentra domesticada (Azevedo et al., 2014), como el caso de A. moorei.
La correlación de caracteres son un soporte para el reconocimiento de parámetros de interés botánico-agronómico que ayudan en la identificación de la variabilidad y la selección indirecta de racimos, frutos y semillas, para estudios de viabilidad económica y para el manejo sostenible de las especies vegetales (Kahn y de Granville, 1992; Moreira et al., 2016). Por eso en esta contribución, las correlaciones de importancia para los racimos se dan entre las características de número de raquillas (NRaq), número de frutos (NFr) y peso del racimo (PRac), lo que nos permitiría relacionar de manera indirecta que, a mayor número de raquillas, habrá mayor número de frutos y mayor peso del racimo. En los frutos, la correlación de importancia se da entre el peso (PFr) y la longitud del fruto (LFr), esto se debe a que los frutos se alargan al compactarse entre sí y esto difiere de las especies de A. bassleriana (Rodríguez-Cabrera et al., 2023), A. huebneri (Macedo, 2015) y A. maripa (Matos et al., 2009; Zuffo et al., 2016), que presentan más libertad para crecer en diámetro. En el caso de las semillas, la correlación de importancia se encuentra entre el diámetro (DSem) y la longitud de la semilla (LSem), que podrían ser indicadores valiosos para la selección indirecta de individuos con semillas de mayor tamaño.
En síntesis, en el presente estudio se describieron las características de los racimos, frutos y semillas de A. moorei en los BTES que fueron comparados con las características de otras especies de Attalea. Se determinó la variabilidad entre las poblaciones por la diferencia de 16 características, donde se reconoció a Lamas como la población que presentó los valores más altos para los racimos y semillas, mientras que Pucacaca y San Pedro presentaron frutos de mayor tamaño y peso. Asimismo, las características que pueden ser útiles para la selección indirecta de estos órganos reproductivos fueron: número de raquillas, número de frutos, peso del racimo, peso y longitud de los frutos, diámetro y longitud de las semillas. Estas características podrían ser potencialmente útiles para el aprovechamiento en la producción de biocombustible y en la extracción de aceites, como se sugieren en otros estudios relacionados con las especies de A. maripa (Matos et al., 2009, 2017; Zuffo et al., 2016) y A. speciosa (Mitja et al., 2008; Vanderlei et al., 2019).
Agradecimientos
A Wildoro Huansi por permitir el ingreso y ejecución de la investigación en el predio ubicado en el distrito de San Pedro de Cumbaza; a Pablo Escudero y la Asociación Bosques del Futuro Ojos de Agua (ABOFOA) por permitir el acceso a la concesión para conservación localizada en el distrito de Pucacaca, y a Wilmer Estela y Agroindustrias Horizonte Verde por permitir el ingreso al fundo Limoncillo, distrito de Lamas. También agradecemos a Ani Cruz, Alejandra Romero y Jer Saavedra, quienes ayudaron en la recolección del material biológico en las localidades de muestreo.
Apéndice. Comparación de las características de racimos, frutos y semillas de A. moorei contra otras especies de Attalea.
| Característica | A. moorei | A. moorei (Moraes, 2020) | A. moorei (Glassman, 1999) | A. phalerata (Glassman, 1999; Miranda et al., 2001) | A. cephalotus Poeppig ex Martius (Henderson, 2020) | A. huebneri (Glassman, 1999; Macedo, 2015) | A. bassleriana (Rodríguez-Cabrera et al., 2023) | A. maripa (Carvalho et al., 2007; Matos et al., 2009, 2017; Passos et al., 2014; Zuffo et al., 2016) |
| Racimos | ||||||||
| LBr + LPBr | 131-219 cm | ~100 cm | ~120 cm | ~89 cm | 125-164 cm | ~206 cm | ~311 cm | ~54-105 cm |
| EBr | 2.07-2.59 cm | 2.0-2.5 cm | 2.0-3 cm | ~50 cm | – | 2.5-4 cm | 0.52-1.25 cm | ~1.2 cm |
| LPe | 31-104 cm | ~50 cm | ~73 cm | ~50 cm | 54 – 100 cm | 120-150 cm | 83.6-189 cm | – |
| LRaq | 48-86 cm | ~40 cm | 33-40 cm | 39 cm | – | 52-56 cm | 74.8-122 cm | – |
| NRaq | 210-377 | numerosas | numerosas | numerosas | 430 | 179-256 | 84-159 | – |
| PRac | 36.94-58.51kg | – | – | – | – | – | 17.21-73.66 kg | 9.12-66.10 kg |
| NFr | 223-392 | – | – | – | – | 267-352 | 100-247 | 754-4571 |
| Disposición de los frutos | alargados y angulados por compactación | angulados por compactación | redondeados o angulados por compactación | – | alargados y angulados por compactación | no compactados | no compactados | – |
| Frutos | ||||||||
| EEx | 1.01-2.1 mm | 1-2 mm | 1-2 mm | ~2 mm | – | 1-3.8 mm | 1.96-7.20 mm | – |
| EMe | 1.41-3.77 mm | 2-4 mm | 2-4 mm | ~2 mm | – | 1-7 mm | 1.22-6.98 mm | – |
| LEn | 5.52-7.29 cm | – | – | – | – | 3.8-8.9 cm | 5.46-8.49 cm | – |
| DEn | 2.7-5.1 cm | – | – | – | – | 2.65-4.3 cm | 3.66-5.91 cm | – |
| EFEn | 1.91-2.89 mm | – | – | – | – | – | 2.33-17.28 mm | – |
| LFr | 7.98-10.98 cm | 8-11 cm | 8.0-10.2 cm | 5-8.4 cm | 6.36-11.06 cm | 7.04-9.56 cm | 7.18-11.95 cm | 2.59-6.8 cm |
| DFr | 3.48-4.52 cm | 3.5-4 cm | 3.5-4.0 cm | 3.0-4.5 cm | 3.01-5.30 cm | 3.3-5.56 cm | 4.24-7.45 cm | 1.47-5.75 cm |
| PFr | 79.79-212.28 g | – | – | – | – | – | 130.41-309.40 g | 4.32-37.66 g |
| Semillas | ||||||||
| PMSem | 1.06-5.48 g | – | – | – | – | – | 0.94-4.27 g | 0.64-21.66 g |
| LSem | 1.02-4.42 cm | 4.5-6 cm | 4.5-6.0 cm | 3.0-3.3 cm | – | 4.38-4.9 cm | 2.26-4.88 cm | 3.64-7.73 cm |
| DSem | 3.01-8.27 mm | 6-8 mm | 6-8 mm | 8-10 mm | – | 7.0-11.5 mm | 8.98-18.57 mm | 16.0-22.6 mm |
| NSem | 2-5 | 3-5 | 3-5 | 2-4 | 1-4 | 1-6 | 1-3 | 1-4 |
Referencias
Albán, J., Millán, B. y Kahn, F. (2008). Situación actual de la investigación etnobotánica sobre palmeras de Perú. Revista Peruana de Biología, 15, 133–142. https://doi.org/10.15381/rpb.v15i3.3344
Alcudia-Aguilar, A., van der Wal, H., Suárez-Sánchez, J., Álvarez-Solis, D. y Tovilla-Hernández, C. (2016). Salinidad, composición botánica y crecimiento de especies frutales en huertos familiares de Tabasco, México. Ecosistemas y Recursos Agropecuarios, 4, 1–12. https://doi.org/10.19136/era.a4n10.691
Anderson, A. B., May, P. H. y Balick, M. J. (1991). The subsidy from nature: palm forests, peasantry, and development on an Amazon frontier. New York: Columbia University Press.
Araújo, F. R. y Lopes, M. A. (2012). Diversity of use and local knowledge of palms (Arecaceae) in eastern Amazonia. Biodiversity and Conservation, 21, 487–501. https://doi.org/
10.1007/s10531-011-0195-9
Aspajo, F., Rodríguez, Á., Corazón-Guivin, M., Freitas, L., Del-Castillo, D., Castro, D. et al. (2008). Caracterización fenotípica de los frutos de Mauritia flexuosa L. f. (Arecaceae) “aguaje”, de nueve comunidades del Datem del Marañón – Región Loreto, Amazonia peruana. Folia Amazónica, 4, 75–82. https://doi.org/10.24841/fa.v17i1-2.270
Azevedo, K. E. X., Cardoso, A. P. M., Pereira, M. D., Pinheiro, P. R. y Severiano, R. L. (2014). Aspectos da biometria de sementes de Syagrus oleracea (Mart.) Becc. (Arecaceae). VIII Simpósio Brasileiro de Pós-Graduaçao em Ciências Florestais. http://dx.doi.org/10.12702/VIII.SimposFloresta.2014.190-630-1
Baker, W. J. y Dransfield, J. (2016). Beyond Genera Palmarum: progress and prospect in palm systematics. Botanical Journal of the Linnean Society, 182, 207–233. https://doi.org/10.1111/boj.12401
Balslev, H., Grandez, C., Paniagua-Zambrana, N. Y., Møller, A. L. y Hansen, S. L. (2008). Palmas (Arecaceae) útiles en los alrededores de Iquitos, Amazonia Peruana. Revista Peruana de Biología, 15, 121–132. https://doi.org/10.15381/rpb.v15i3.3343
Barfod, A. S., Hagen, M. y Borchsenius, F. (2011). Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Annals of Botany, 108, 1503–1516. https://doi.org/0.1093/aob/mcr192
Botezelli, L., Davide, A. C. y Malavasi, M. M. (2000). Características dos frutos e sementes de quatro procedências de Dipteryx alata Vogel (Baru). CERNE, 6, 9–18.
Carvalho, A. L., Ferreira, E. J. L., Nascimento, J. y Regiani, A. M. (2007). Aspectos da Biometria dos Cachos, Frutos e Sementes da Palmeira Najá (Maximiliana maripa (Aublet) Drude) na Região Leste do Estado do Acre. Revista Brasileira de Biociências, 5, 228–230.
Cássia-Silva, C., Freitas, C. G., Alves, D. M. C. C., Bacon, C. D. y Collevati, R. G. (2019). Niche conservatism drives a global discrepancy in palm species richness between seasonally dry and moist habitats. Global Ecology and Biogeography, 28, 814–825. https://doi.org/10.1111/geb.12895
Costa, J. R., Mitja, D. y Fontes, J. R. A. (2009). Bancos de sementes de plantas daninhas em cultivos de mandioca na Amazônia Central. Planta Daninha, 27, 665–671. https://doi.org/10.1590/s0100-83582009000400004
Couvreur, T. L. P., Forest, F. y Baker, W. J. (2011). Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biology, 9, 1–12. https://doi.org/10.1186/1741-7007-9-44
Dávila, E. J., Merino, C., Mejía, K., García, D. E., Sauvain, M. y Sotero, V. E. (2011). Caracterización química de tres palmeras del género Attalea. Revista de La Sociedad Química del Perú, 77, 218–224.
Dionisio, L. F. S., Smiderle, O. J., Gomes, J. P., Santos, R. L., Leão, F. M. y Bardales-Lozano, R. M. (2018). Caracterización de frutos y semillas de Astrocaryum aculeatum G. Mey. en la Amazonia septentrional, Roraima – Brasil. Revista de Ciências Agrárias, 61, 1–7. http://dx.doi.org/10.22491/rca.2018.2338
Da Cunha, I. R. G., Ribeiro, L. M., Mercadante-Simões, M. O., Pajehú, L. F., Lopes, P. S. N. y Pimenta, M. A. S. (2020). Ontogenesis and responses to shading of Attalea vitrivir (Arecaceae) eophyll. Flora, 272, 1–10. https://doi.org/10.1016/j.flora.2020.151693
De Nevers, G. C. (1987). The genus Attalea (Palmae) in Panama. Annals of the Missouri Botanical Garden, 74, 505–510. https://doi.org/10.2307/2399318
Del-Castillo, Á. M. C., Mejía, K., Rojas-Fox, J., Moraes, R. M., Sánchez-Márquez, M. y Pintaud, J. C. (2018). Diversidad de especies de Attalea (Arecaceae) en el Perú. Tarapoto, Perú: Instituto de Investigaciones de la Amazonia Peruana/ Universidad Mayor de San Andrés/ Institut de Recherche pour le Développement.
Felizardo, S. A., Freitas, A. D. D., Marques, N. de S. y Bezerra, D. A. (2015). Características biométricas de frutos e sementes de Oenocarpus bataua Mart. com procedência de Almeirim, Pará. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 10, 09–15. http://dx.doi.org/10.18378/rvads.v10
i5.3672
Ferreira, E. L. (2005). Manual das palmeiras do Acre, Brasil. Río Branco, Brasil: Instituto Nacional de Pesquisas/ Universidade Federal do Acre.
Freitas, L., Ochoa, M. y Del-Castillo, D. (2011). Variabilidad morfométrica de las estructuras reproductivas del aguaje Mauritia flexuosa L. f. en tres poblaciones naturales de la Amazonía peruana. Folia Amazónica, 20, 101–109. https://doi.org/10.24841/fa.v20i1-2.358
Galeano, G. y Bernal, R. (2010). Palmas de Colombia. Guía de campo. Bogotá, Colombia: Instituto de Ciencias Naturales Nacional, Universidad Nacional de Colombia.
Gárate-Quispe, J. S., Canahuire-Robles, R., Surco-Huacachi, O. y Alarcón-Aguirre, G. (2021). Desarrollo estructural y composición florística arbórea en áreas afectadas por minería aurífera en la Amazonía peruana: a 20 años de su reforestación. Revista Mexicana de Biodiversidad, 92, e923437. https://doi.org/10.22201/ib.20078706e.2021.92.3437
Glassman, S. F. (1999). A Taxonomic treatment of the Palm Subtribe Attaleinae (Tribe Cocoeae). Chicago: University of Illinois Press. https://doi.org/10.5962/bhl.title.49920
Gonçalves, L. G. V., Andrade, F. R., Junior, B. H. M., Schossler, T. R., Lenza, E. y Marimon, B. S. (2013). Biometria de frutos e sementes de mangaba (Hancornia speciosa Gomes) em vegetação natural na região leste de Mato Grosso, Brasil. Revista de Ciências Agrárias, 36, 31–40. https://doi.org/10.19084/rca.16280
González, A., Mejía, K. y Torres, G. (2014). Caracterización morfológica de frutos de Oenocarpus bataua C. Martius “ungurahui”. Folia Amazónica, 23, 191–138. https://doi.org/
10.24841/fa.v23i2.18
Goresam (Gobierno Regional de San Martín) y Pehcbm (Proyecto Especial Huallaga Central y Bajo Mayo). (2010). Propuesta de mesozonificación ecológica económica subcuenca del Cumbaza. Tarapoto: Sistema Nacional de Información Ambiental – Ministerio del Ambiente.
Henderson, A. (2020). A revision of Attalea (Arecaceae, Arecoideae, Cocoseae, Attaleinae). Phytotaxa, 444, 1–76. https://doi.org/10.11646/phytotaxa.444.1.1
Henderson, A., Galeano, G. y Bernal, R. (1995). Field guide to the palms of the Americas. Princeton, NJ: Princeton University Press. https://doi.org/10.2307/j.ctvcszzzd
Higuti, K. O., Graziano, T. T. y Demattê, M. E. S. P. (1994). Morphological characterization of palms (Arecaceae) of Attaleinae Subtribe from the Collection of Experimental Nursery of FCAV-UNESP. Acta Horticulturae, 360, 35–40. https://doi.org/10.17660/ActaHortic.1994.360.4
Jiménez-Morera, I. y García, N. (2020). Phenology, biometrics and fruits production of Attalea nucifera (Arecaceae) in Colombia. Acta Biológica Colombiana, 25, 104–111. https://doi.org/10.15446/abc.v25n1.77701
Kahn, F. y de Granville, J.-J. (1992).Palms and forest management in Amazonia. En F. Kahn y J. J. de Granville (Eds.), Palms in forest ecosystems of Amazonia. (pp. 155–167). https://doi.org/10.1007/978-3-642-76852-1
Lima, P. R. F. y Ferreira, E. J. L. (2017). Biometría de cachos, frutos e sementes e germinacão de jaciarana (Syagrus sancona H. Karsten. Arecaceae). Enciclopédia Biosfera, 14, 267–278. https://doi.org/10.18677/EnciBio_2017A25
Macedo, N. L. (2015). Caracterización morfológica y ecológica de dos poblaciones de Attaleahuebneri, en la cuenca baja del río Ucayali, Loreto – Perú (Tesis). Facultad de Ciencias Forestales. Universidad Nacional de la Amazonia Peruana. Iquitos, Perú.
Matos, A. K., Rosa, L. S., Pires, H. C. G., Cabral, B. S., Vieira, T. A. y Silva, V. M. (2017). Morfotipos de frutos e morfologia de plântulas de Attalea maripa (Aubl.) Mart. Ciência Florestal, 27, 819–829. https://doi.org/10.5902/1980509828632
Matos, A. K., Rosa, L. S., Silva, R., Pires, H., Balieiro, E. y Vieira, T. (2009). Morfometría de Cachos, Frutos e Sementes de Attalea maripa (Aubl.) Mart: uma espécie nativa da Amazônia com potencial para produção de biodiesel.
Revista Brasileira de Agroecología, 4, 1285–1289.
Mejía, K., Pintaud, J. C., Del-Castillo, Á. M. R., Santa Cruz, L., Rojas-Fox, J., Jiménez, V. et al. (2014). Del bosque húmedo al bosque seco: adaptabilidad de las palmeras al cambio climático. En S. Gonzáles, J. J. Vacher y A. Grégoire (Eds.), El Perú frente al cambio climático: resultados de investigaciones franco-peruanas (pp. 101–111). Lima: Institut de Recherche pour le Développement.
Miranda, I. P. de A. 2014. Recursos agroenergéticos a partir de palmeiras nativas para a agricultura familiar na Amazônia brasileira. En M. V. A. Finco y R. Bailis (Eds.), Agroenergia e Stakeholders na Amazônia Legal Brasileira (pp. 107–117) Rio de Janeiro: Publit.
Miranda, I. P. A., Guillaumet, J. L., Barbosa, E. M., Rodrigues, M. R. L. y Silva, M. F. F. (2003). Ecossistemas Florestais em Áreas Manejadas na Amazônia. Manaus, Amazonas, Brazil: INPA/ IRD/ MPEG/ Embrapa/ PPG7.
Miranda, I. P. A. y Rabelo, A. (2008). Guia de identificação das palmeiras de Porto Trombetas (Pará). Manaus, Amazonas, Brazil: MRN/ EDUA/ INPA.
Miranda, I. P. A., Rabelo, A., Bueno, C. R., Barbosa, E. M. y Ribeiro, M. N. S. (2001). Frutos de palmeiras da Amazônia. Manaus: Ministério da Ciência e Tecnologia, Instituto Nacional de Pesquisas da Amazônia.
Mitja, D., Silva-Sousa, J. C., Melo, S. L. y Chaib, H. F. (2008). Biometria dos Frutos e Sementes de babaçu, Natividade-to. IX Simpósio Nacional Cerrado e II Simposio Internacional Savanas Tropicais. 12 al 17 de octubre de 2008. Embrapa, Brasília.
Moraes, R., M. (2020). Flora de palmeras de Bolivia, 2a Ed. Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, Plural Editores.
Moraes, R., M. y Zenteno-Ruiz, F. S. (2017). El género Attalea (Arecaceae) de Bolivia: afinidades con sistemas ecológicos regionales. Revista Peruana de Biología, 24, 273–282. https://doi.org/10.15381/rpb.v24i3.13913
Moreira, W. K. O., Oliveira, S. S., Reis, J., Paraense, L. R. C., Guimarães, A. T. y da Silva, R. T. L. (2016). Análise de correlação em frutos de pupunha (Bactris gasipaes Kunth). Global Science and Technology, 9, 106–115.
Neto, V. C. D. y Ferreira, E. J. L. (2014). Biometria de cachos, frutos e sementes da palmeira jarina (Phytelephas macrocarpa Ruiz & Pavon) oriundos de fragmentos florestais primários e secundarios do leste do Acre. Enciclopédia Biosfera, 10, 2765–2775.
Nicolau, A., Herndon, K., Flores-Anderson, A. y Griffin, R. (2019). A spatial pattern analysis of forest loss in the Madre de Dios region, Peru. Environmental Research Letters, 14, 124045. https://doi.org/10.1088/1748-9326/ab57c3
Paniagua, N. Y., Bussmann, R. W. y Macía, M. J. (2014a). El bosque sí tiene valor: el uso de palmeras en las comunidades campesinas e indígenas de la región de Inambari, Madre de Dios, Perú. Ethnobotany Research and Applications, 13, 1–81.
Paniagua, N. Y., Bussmann, R. W. y Macía, M. J. (2014b). El conocimiento de nuestros ancestros: los Ese Eja y su uso de palmeras, Madre de Dios, Perú. Ethnobotany Research and Applications, 13, 1–94.
Paniagua, N. Y., Bussmann, R. W., Vega, C., Téllez, C. y Macía, M. J. (2014c). Nuestro conocimiento y uso de las palmeras: una herencia para nuestros hijos. Comunidades Llaquash, San Martín, Perú. Ethnobotany Research and Applications, 13, 1–105.
Passos, M. A. B., Duarte, O. R. y Yuyama, K. (2014). Morphometric Characterization of Attalea maripa (Arecaceae) from Roraima State, Brazil. Journal of Agricultural Science, 6, 115-125. https://doi.org/10.5539/jas.v6n12p115
Pérez-Vásquez, N. S., Arias-Ríos, J. y Quirós-Rodríguez, J.A. (2015). Variación espacio-temporal de plantas vasculares acuáticas en el complejo cenagoso del bajo Sinú, Córdoba, Colombia. Acta Biológica Colombiana, 20, 155–165. https://doi.org/10.15446/abc.v20n3.45380
Pintaud, J. C. (2008). An overview of the taxonomy of Attalea (Arecaceae). Revista Peruana de Biología, 15, 55–63. https://doi.org/10.15381/rpb.v15i3.2968
Pintaud, J. C., Galeano, G., Balslev, H., Bernal, R., Borchsenius, F., Ferreira, E. et al. (2008). Las palmeras de América del Sur: Diversidad, distribución e historia Evolutiva. Revista Peruana de Biología, 15, 5–28. https://doi.org/10.15381/rpb.v15i3.2662
Pintaud, J. C., Del-Castillo, Á. M. R., Ferreira, E. J. L., Moraes, R. M. y Mejía, K. (2016). Towards a Revision of Attalea in Western Amazonia. Palms, 60, 57–77.
RDE (Resolución de Dirección Ejecutiva) N° 004-2019-MINA
GRI-SERFOR. (2019). Ecosistemas que se incorporan a la Lista Sectorial de Ecosistemas Frágiles. Disponible en: https://cdn.www.gob.pe/uploads/document/file/1235545/RDE_N__0004-2019-MINAGRI-SERFOR-DE001A050-120200814-3205787-m1h56f.pdf
Rodríguez-Cabrera, E. H., Moraes R., M., Rojas-Fox, J., Grandez, C., Mejía, K. y del Castillo, Á. M. R. (2023). Morfología y biometría de racimos, frutos y semillas de Attalea bassleriana en Alto Amazonas, Perú. Biota Colombiana, 24, e1107. https://doi.org/10.21068/2539200X.1107
RStudio Team (2021). RStudio: integrated development for R. RStudio, PBC, Boston, MA URL: http://www.rstudio.com/
Salm, R., Jalles-Fliho, E. y Schuck-Paim, C. (2005). A model for the importance of large arborescent palms in the dynamics of seasonally-dry amazonian forests. Biota Neotropica, 5, 151–156. https://doi.org/10.1590/S1676-06032005000300011
Sanjinez-Argandoña, E. J. y Chuba, C. A. M. (2011). Caracterização biométrica, física e química de frutos da palmeira bocaiuva Acrocomia aculeata (Jacq) Lodd. Revista Brasileira de Fruticultura, 33, 1023–1028. https://doi.org/10.1590/s0100-29452011000300040
Schellerup, I., Achútegui, E., Quipuscoa, V., Fjeldsa, J. y Samamé, M. C. (2001). Wayko-Lamas, la gente y la biodiversidad. Cusco:
Centro para la Investigación sobre la Diversidad Cultural y Biológica de los Bosques Pluviales Andinos (DIVA).
Sotero, V., Merino, C., Dávila, E., Mejía, K., Vela, J. y García, D. (2010). Caracterización de la fracción insaponificable y estabilidad del aceite de tres palmeras del género Attalea. Folia Amazónica, 19, 33–40. https://doi.org//10.24841/fa.v19i1-2.341
Vanderlei, R. S., Silva, J. V. y Moura, F. B. P. (2019). Biometry and non-destructive allometric model for estimating babassu (Attalea speciosa) fruit volume and densities. Revista Ouricuri, 9, 1–10. http://doi.org/10.29327/ouricuri.9.2-1
Zuffo, A. M., Gesteira, G. S., Zufo, J. M., Andrade, F. R., Soares, I. O., Zambiazzi, E. V. et al. (2016). Caracterização biométrica de frutos e sementes de mirindiba (Buchenavia tomentosa Eichler) e de inajá (Attalea maripa [Aubl.] Mart.) na região sul do Piauí, Brasil. Revista de Ciências Agrárias, 39, 331–340. https://doi.org/10.19084/rca15152
Altitudinal distribution, diversity, and conservation of pines and oaks in the Monarch Butterfly Biosphere Reserve, Mexico
Altagracia Guerrero-Marmolejo a, c, Diego R. Pérez-Salicrup a, *, Miguel Martínez-Ramos a, M. Isabel Ramírez b
a Universidad Nacional Autónoma de México, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Antigua Carretera a Pátzcuaro No. 8701, Exhacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
b Universidad Nacional Autónoma de México, Centro de Investigaciones en Geografía Ambiental, Antigua Carretera a Pátzcuaro No. 8701, Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
c Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Edificio A, 1º piso, Circuito de Posgrados, Ciudad Universitaria, 04510 Ciudad de México, Mexico
*Corresponding author: diego@cieco.unam.mx (D.R. Pérez-Salicrup)
Received: 5 September 2023; accepted: 5 November 2024
Abstract
Pinus and Quercus species face anthropogenic disturbances that affect their structure and distribution. Understanding the distribution patterns of these species is crucial for establishing appropriate management practices to conserve their diversity and the ecosystem services they provide. The aim of this study was to analyze pine and oak species’ distribution, dominance, and diversity patterns along an altitudinal gradient in the Monarch Butterfly Biosphere Reserve. We established 6 elevation transects (2,250 – 3,300 m asl) with 32 points every 150 m. At each site, 25 pine and oak trees located between 0 and 60 m from a central coordinate, with a diameter at breast height ≥ 10 cm, were recorded. Distribution patterns, dominance, and alpha and beta diversity were analyzed. The least abundant species were the most geographically restricted. Pinus pseudostrobus and Quercus laurina were the most dominant species. Alpha diversity was not associated with elevation, nor did it show a defined distribution pattern. Beta diversity was associated with elevation at the highest and lowest elevations, forming an inverted hump. These patterns may be the result of human activities, such as logging and agriculture, which have altered natural patterns of diversity and distribution.
Keywords: Distribution; Dominance; Forest management strategies; Tropical montane forests
© 2025 Universidad Nacional Autónoma de México, Instituto de Biología. Este es un artículo Open Access bajo la licencia CC BY-NC-ND
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Distribución altitudinal, diversidad y conservación de los pinos y los encinos en la Reserva de la Biosfera Mariposa Monarca, México
Resumen
Las especies de Pinus y Quercus son sometidas a actividades antropogénicas que afectan la estructura y distribución de sus poblaciones. Comprender sus patrones de distribución es crucial para establecer prácticas de manejo que permitan conservar su diversidad y los servicios ecosistémicos que proporcionan. Nuestro objetivo fue analizar los patrones de distribución y diversidad de especies de pino y encino a lo largo de un gradiente altitudinal en la Reserva de la Biosfera Mariposa Monarca. Trazamos 6 transectos altitudinales (2,250 – 3,300 m snm), donde establecimos 32 puntos de muestreo cada 150 m. En cada punto registramos 25 pinos y encinos ubicados entre 0 y 60 m de una coordenada central, con diámetros a la altura del pecho ≥ 10 cm. Analizamos los patrones de distribución, dominancia y diversidad alfa y beta. Las especies menos abundantes presentaron distribuciones restringidas. Pinus pseudostrobus y Quercus laurina mostraron alta dominancia. La altitud no influyó en la diversidad alfa. La diversidad beta fue explicada por la altitud en los puntos más altos y bajos, formando una joroba invertida. Estos patrones podrían ser consecuencia de actividades antropogénicas como la extracción forestal y agricultura, las cuales han alterado los patrones de diversidad y distribución natural.
Palabras clave: Distribución; Dominancia; Estrategias manejo forestal; Bosques tropicales montanos
Introduction
Pinus (pine) and Quercus (oak) are 2 of the most ecologically and economically important genera in the mountainous regions of Mexico (Galicia et al., 2018). However, in Mexico, pine-oak forests experience constant anthropogenic activities that reduce and modify their populations (Galicia et al., 2015, 2018; Rzedowski, 2006), even in areas dedicated to conservation, such as natural reserves (Champo-Jiménez et al., 2012). Natural patterns of species distribution and diversity in mountainous areas are determined by environmental factors associated with altitudinal gradients (Callaway et al., 2002; Fontana et al., 2020; Rahbek, 2005; Whittaker, 1967). Therefore, analyzing the distribution patterns and diversity of pine-oak species along altitudinal gradients helps us understand the biotic (e.g., competition and predation) and abiotic (e.g., temperature and moisture) environmental factors associated with the altitudinal gradient that influence the processes that determine these patterns (McCain & Grytnes, 2010). This information is essential for the implementation of management strategies (e.g., restoration, forestry extraction) to ensure the long-term maintenance of these species (Martin et al., 2021; Ohdo & Takahashi, 2020).
In montane forests, where the pines and oaks are distributed, environmental conditions and resource availability vary across altitudinal gradients (Whittaker, 1956; Zhou et al., 2019). Temperature decreases and relative humidity increases at higher elevations (Barry, 2008). Slope orientation also influences these variables, as south-facing slopes receive more solar radiation in the Northern Hemisphere, making them relatively more xeric than north-facing slopes (González-Tagle et al., 2008). These different conditions determine the distribution of tree species and tree diversity across elevational gradients (Brambach et al., 2017; Martin et al., 2021; Toledo-Garibaldi & Williams-Linera, 2014; Whittaker, 1956).
In montane forests, elevation also affects alpha diversity (species richness at the local scale). Two contrasting patterns have been proposed. First, a hump-shaped pattern in which species diversity peaks in the middle parts of the elevation gradient, and second, a monotonic decline in which species diversity decreases with increasing elevation (Rahbek, 2005). In addition, the elevation gradient also influences patterns of beta diversity; these patterns include a change or substitution of species along the elevation gradient, and nesting, in which species are added or lost but not replaced (Baselga & Orme, 2012). In some Mountain environments, dissimilarity increases with elevation gradient, while in others it decreases with elevation (Fontana et al., 2020; Sabatini et al., 2017; Wang et al., 2002). However, alpha and beta diversity patterns along elevation gradients have been little evaluated in tropical montane forests dominated by pine and oak species in central Mexico.
Pine and oak forests are among the most vulnerable environments to the effects of global warming (Galicia et al., 2015). With increasing temperatures, the distribution and diversity of pines and oaks will be affected (Alfaro-Reyna et al., 2019), especially in montane areas. Therefore, it is essential to document the actual distribution patterns of species and their diversity, especially those with high ecological and economic relevance, such as pines and oaks (Galicia & Zarco-Arista, 2014). This information is essential for projecting the potential future distribution of species as global temperatures increase (Villers-Ruiz & Trejo-Vázquez, 1997). These data will also allow us to predict which species will be most vulnerable to such changes. Furthermore, this information is useful for improving management and conservation strategies at the local scale, especially in areas of high conservation importance where forest exploitation also occurs, as in the case of the Monarch Butterfly Biosphere Reserve (MBBR) located in the states of Mexico and Michoacán, Mexico.
The MBBR is an area of extreme importance for the conservation of the winter migration of Danaus plexippus L. (Monarch butterflies) from eastern Canada and the USA to Mexico. Conservation of this phenomenon is linked to the integrity of the tree community, particularly the Abies religiosa (Kunth) Schltdl. & Cham., trees on which these insects perch. The forests of the MBBR are also crucial for conservation due to the high biodiversity they contain, with approximately 694 plant species recorded in the core zone (Cornejo-Tenorio & Ibarra-Manríquez, 2017). Given that this Natural Protected Area has already been created, it should serve to preserve the pine and oak species present in the MBBR, as well as the environmental services they provide to the inhabitants of the region.
Within the MBBR, the highest number of oak species grow at elevations below 3,000 m, mainly in the buffer zone, where most legal and illegal human activities take place (Cornejo-Tenorio & Ibarra-Manríquez, 2017). These activities include logging and land use conversion to agriculture (Champo-Jiménez et al., 2012; Navarrete et al., 2011; Vidal et al., 2014). Recently, avocado plantations have been detected also at lower elevations (Sáenz-Ceja & Pérez-Salicrup, 2021). In the MBBR, most tree studies focus on Abies religiosa (Kunth) Schltdl. & Cham, the monarch butterfly host species, and Pinus pseudostrobus Lindl., the most economically important species in the zone (Gómez-Pineda et al., 2020; Sáenz-Ceja & Pérez-Salicrup, 2020). However, few studies have analyzed the distribution patterns and diversity of the remaining pine and oak species.
The main objective of this study was to document the distribution of pines and oaks in the MBBR along an elevation gradient from 2,250 to 3,300 m. In particular, we evaluated patterns of distribution, dominance, and alpha and beta diversity of pine and oak species. We expected to find alpha diversity patterns associated with elevation and a well-defined species turnover along the elevation gradient, with oaks dominating at lower elevations and pines at higher elevations.
Materials and methods
We conducted this study in the Monarch Butterfly Biosphere Reserve (MBBR), located between Estado de México and Michoacán, Mexico (19°44’27” and 19°18’32” N, 100°22’26” and 100°09’07” W). The MBBR covers 5.63 × 103 ha, divided into 3 core zones (with a total area of 1.36 × 103 ha) and 2 buffer zones (with a total area of 4.27 × 103 ha; Conanp, 2001; Fig. 1). Seventy-seven percent of the MBBR area consists of mountains and hills, while the rest consists of small valleys. Eighty percent of the area belongs to 59 ejidos (a form of communal land ownership) and 13 indigenous communities, while the rest belongs to the federal or state governments (Conanp, 2001).
Elevations in the MBBR range from 2,030 to 3,640 m. Annual precipitation ranges from 800 to 1,500 m, while the mean annual temperature varies from 8 to 22 °C. It is a mountainous system where steep slopes, the altitudinal gradient, and the different slope orientations create microclimatic differences in humidity and precipitation (Carlón-Allende et al., 2015; Conanp, 2001; Giménez-de Azcárate et al., 2003).
Using satellite imagery from Google Earth, we identified the locations where 6 altitudinal transects of continuous forest cover could be established. These transects were located in the larger southern portion of the MBBR (Chincua-Campanario-Cerro Pelón corridor). We omitted Cerro Altamirano, a separate part of the MBBR, because it does not have a wide elevation gradient with continuous forest cover. Three transects were placed on north-facing slopes and 3 on south-facing slopes. Of these 6 transects, 2 were located in the southern area of the reserve, 2 in the central area, and 2 in the northern area, then, 32 circular points were established every 150 m within each transect, covering an elevation range from 2,250 to 3,300 m (Sáenz-Ceja & Pérez-Salicrup, 2019). At lower and higher elevations, the forest cover is very discontinuous, and not all transects reached the maximum or minimum elevation levels; therefore, the number of points in each transect ranges from 5 to 7.
At each point, a standardized sample of 25 trees of the dominant genera in the area (Pinus and Quercus) with diameter at breast height (DBH; 1.3 m) ≥ 10 cm located between 0 and 60 m from the central coordinate was selected. To estimate the area of each circular plot, we used the distance from the central coordinate to the furthest measured tree as the radius of the circle. These distances ranged from 12 to 60 m. In the field, we confirmed that the points were covered by natural pine and oak stands and were not forest plantations or agricultural fields. We identified all tree species in the field, except for some oak individuals for which we collected botanical samples. We then identified them in the laboratory of Ecología y Manejo de Recursos Forestales, UNAM, and with the help of experts in the vegetation of the MBBR.
To evaluate the dominance of pine and oak species along the altitudinal gradient, we used abundance rank-curves, for which we estimated the percentage of proportional abundance of each species (Magurran, 2004). To assess whether altitudinal gradient and slope orientation influence oak and pine density and basal area, we performed second-order Generalized Linear Models (GLMs) with gamma distributions using the MASS package (Venables & Ripley, 2002) in the open-source R software 4.3.2 (R Core Team, 2023).

Figure 1. The dotted grey line represents the most part of the Monarch Butterfly Biosphere Reserve (the Chincua-Campanario-Cerro Pelón block), excluding Cerro Altamirano. Polygons with dashed black lines represent the core zones of the MBBR. Black circular dots indicate the location of sampling points along the altitudinal gradient. Map by M.I. Ramírez.
To conduct diversity analyses, we first ensured that the sampling effort at each point was adequate by estimating sample coverage with upper and lower 95% confidence intervals to validate the alpha diversity comparisons we made (Chao & Jost, 2012: Chao et al., 2020, 2023). With this standardized approach, it is possible to quantify, estimate, and compare richness between communities, even if the sampling points are of different sizes (Chao et al., 2020, 2023; Moreno, et al., 2011). We then estimated alpha diversity at points of elevation and slope orientation as a function of species abundance distribution. We used Hill’s numbers (Hsieh et al., 2016; MacArthur, 1972), which analyze 3 orders of diversity. The first order (q0) estimates species richness or the number of species per unit area; the second order (q1; equivalent to the exponential of Shannon’s diversity index) estimates the number of common species; the third order (q2; equivalent to the inverse of Simpson’s diversity index) counts the number of dominant species. To perform this analysis, we used the iNEXT package (Hsieh et al., 2016). We conducted an analysis to determine if the area of the sampling point influenced the species diversity recorded. We estimated alpha diversity per hectare and determined its correlation with altitudinal gradient and slope orientation. We also analyzed whether the altitudinal gradient explained the order of diversity (q0, q1, q2). For all these analyses, we used second-order generalized linear models (GLMs) with gamma distributions (Venables & Ripley, 2002) in the open-source R software 4.3.2 (R Core Team, 2023). Next, we computed the average dissimilitude, turnover, and nesting of species along the altitudinal gradient to estimate beta diversity using the Jaccard index for every sampling plot. The standardized number of individuals recorded across the elevation gradient allows us to compare sampling sites even if we have different areas. Finally, we evaluated whether the elevation influences the average species turnover and nesting through a first and second-order linear model. We used the open-source R software (version 4.3.2) program to perform all analyses.
Results
Pine and oak species abundance and distribution. We measured 749 individuals on 10.4 ha; 466 individuals belonged to the genus Pinus, 423 individuals (91%) were Pinus pseudostrobus and the rest of the pine species had only 9% of the individuals (Table 1). The remaining 283 individuals belonged to the genus Quercus; 155 were Quercus laurina Bonpl, the rest 128 were from the other 4 species (Table 1). The individuals belonged to 10 species, 5 in each genus. Pinus pseudostrobus and Quercus laurina had the largest distribution ranges, the highest number of individuals, and the largest basal area (Fig. 2a, b). We recorded P. pseudostrubus and Q. laurina at most points along the altitudinal gradient and on the northern and southern slopes. Q. laurina showed the highest density values at 2,850 m. Pinus herrerae Martínez and Pinus leiophylla Schiede ex Schltdl. & Cham showed disjunct ranges, being absent at most elevations of the altitudinal gradient. Similarly, Pinus montezumae Lamb. was recorded at the lowest (2,250) and highest (3,330) elevations, but not at the intermediate elevations (Fig. 2a). Two pine species, P. leiophylla, and P. montezumae, were recorded only on south-facing slopes (Table 1). We did not find clear patterns of pine and oak being associated with a particular elevation range.
No single species was present across the entire elevation gradient, but 4 oak species had few individuals at almost all elevation points (Fig. 3). Pinus pseudostrobus was the dominant species (with the highest mean relative abundance),across most of the altitudinal gradient, except at the extremes, followed by Quercus laurina. The lowest altitudinal points (2,250 m) were dominated by the genus Quercus and the highest (3,300 m) by P. montezumae. Although Pinus dominated along the gradient, we found more oak species than pine species at most elevations (Fig. 3). The density of individuals was not associated with the elevation gradient (F2, 29 = 2.4, p > 0.05), nor with the orientation of the slopes (F1, 30 = 0.29, p > 0.05). Basal area was associated with the altitudinal gradient, showing a lower basal area at the extremes of the altitudinal gradient (2,250 and 3,300 m; F2, 31 = 3.95, p = 0.03).
Alpha diversity. According to the sample coverage analysis, the samples in the plots were equally complete, with values above 90% (Appendix). The species richness per ha did not differ significantly between the northern and southern slopes (F1, 30 = 0.25, p > 0.05). On the other hand, none of the diversity orders analyzed (q0, q1, q2) showed a defined distribution pattern, either hump-shaped or with a monotonic decrease (Fig. 4a, b). Diversity orders q0 (F1, 29 = 0. 46, p > 0.05) and q1 (F1, 29 = 0.16, p > 0.05) were not explained by altitudinal gradient. However, order q2, which focuses on dominant species, was associated with the altitudinal gradient (F1, 29 = 0.56, p = 0.001), showing higher dominance at higher and lower altitudinal points (Fig. 4a). The area of the sampled point did not influence the diversity patterns found (F1, 28 = 0.02, p > 0.05).
Table 1
Number of individuals of each pine and oak species recorded on the north and south slopes of the MBBR.
| Species | Northern slope | Southern slope | Total |
| Pinus pseudostrobus Lindl. | 176 | 247 | 423 |
| Pinus montezumae Lamb. | 0 | 19 | 19 |
| Pinus herrerae Martínez | 11 | 1 | 12 |
| Pinus leiophylla Schiede ex Schltdl. & Cham. | 0 | 5 | 5 |
| Pinus teocote Schied. ex Schltdl. & Cham. | 1 | 6 | 7 |
| Quercus laurina Bonpl. | 70 | 85 | 155 |
| Quercus obtusata Bonpl. | 32 | 13 | 45 |
| Quercus crassifolia Bonpl. | 18 | 14 | 32 |
| Quercus laeta Liebm. | 8 | 23 | 31 |
| Quercus rugosa Née | 12 | 8 | 20 |
| Total | 328 | 421 | 749 |
Beta diversity. Pine and oak species did not show a pattern of increasing or decreasing species turnover across the elevation gradient. The pattern found was more similar to an inverted hump. The average floristic dissimilarity between sites was moderate 0.50 ± 0.27 (x̅ ± SE), and the model showed a quadratic effect of elevation explaining 65% of the residual variance (F5.2 = 7.77, p = 0.02; Fig. 5a). On average, the dissimilarity between sites due to species turnover was 0.32 (se = 0.1), and the elevation gradient explained 62% of this variance (F5.2 = 13, p = 0.01; Fig. 5b). The highest mean values of turnover occurred at the lowest elevation point, 2,250 m (0.56), and at the highest elevation zone, 3,300 m (0.76), with the lowest mean values at the 3,000 m point (0.33). Beta diversity associated with nesting was 0.18 (se = 0.1), and elevation explained 50% of the residual variance (F5.2 = 7.88, p = 0.03; Fig. 5c).

Figure 2. Abundance and distribution of pine and oak species in the MBBR: a, mean density of pine and oak species at different elevation points; b, mean basal area/ha of pine and oak species across the elevation gradient. No error bars are shown for species recorded in only one plot.
Discussion
Distribution patterns and alpha diversity of pines and oaks in the MBBR were not associated with the elevation gradient. The results suggest that the distribution and diversity of most of these species in the study area were not determined by environmental factors related to the elevation gradient (e.g., relative humidity and temperature). In other studies, conducted with pines and oaks in Michoacán and in Oaxaca, Mexico (Martin et al., 2021; Maza-Villalobos et al., 2014), pine and oak species diversity showed a clear pattern of distribution and alpha diversity associated with the altitudinal gradient. We consider that it is necessary to carry out more research in the MBBR to determine if the lack of association between the distribution patterns and diversity of pine and oak species with the environmental factors associated with the altitudinal gradient is related to anthropogenic disturbances (Champo-Jiménez et al., 2012; Navarrete et al., 2011).

Figure 3. Rank-abundance curves based on the percentage of mean relative abundance of pine and oak across the altitudinal gradient in the MBBR, Mexico. P. pse = Pinus pseudostrobus, P. teo = Pinus teocote, P. mon = Pinus montezumae, P. lei = Pinus leiophylla, Q. lau = Quercus laurina, Q. lae = Quercus laeta, Q. obt = Quercus obtusata, Q. rug = Quercus rugosa, Q. cra = Quercus crassifolia.
Pines and oak dominance and distribution. In the MBBR, the most dominant (abundant) species along the altitudinal gradient and between the northern and southern slopes was P. pseudostrobus. It should be taken into account that this species is the most commonly used in reforestation programs (Vicente, 2020), which could also favor its current high dominance. For example, between 2001 and 2012, the MBBR experienced an episode of massive illegal logging that affected approximately 2179 hectares of forest. Through intensive reforestation, a large part of the affected tree cover in the area has been restored (Ramírez et al., 2019; Vidal et al., 2014). These reforestations have used the most economically relevant species in the area and the species where the monarch butterfly roosts A. religiosa and P. pseudostrobus (Conanp, 2001; Vicente, 2020). These biases may have influenced the reduction of populations of less common pine species.
In contrast to P. pseudostrobus, we found that the less abundant pine species (subdominant), P. montezumae, P. herrerae, P. leiophylla, and P. teocote, have restricted distributions with few individuals. These species are widely distributed at the national level (Herrera-Hernández & Escobar, 2021), and large populations of P. herrerae have been recorded in regions surrounding the MBBR (Cornejo-Oviedo et al., 2004). There is also evidence that P. montezuame has very similar distributional niches to P. pseudostrobus in the Neovolcanic system of central Mexico, where the MBBR is located (Manzanilla-Quiñones et al., 2018). However, based on our results, populations of these subdominant less abundant pine species may be at risk of local extinction.

Figure 4. a, Species diversity at different altitudinal positions in the MBBR; b, species diversity at the different points and in the north- and south-facing slopes. q0 corresponds to the total number of species, q1 to the number of common species, and q2 to the number of dominant species. The sampling coverage was acceptable in the 32 points studied.
Although oak species richness was higher than pine species richness, oak species had fewer individuals at most points along the altitudinal gradient. The most dominant oak species was Quercus laurina, which has a wide altitudinal and distributional range in Mexico (Valencia, 2004). This higher diversity of oak species along the altitudinal gradient may be associated with the fact that oak wood is not as commercialized as pine wood in the MBBR and in Mexico (Semarnat, 2018), and in turn, may not be as heavily harvested as species of the genus Pinus. Most oak species in the MBBR, and Mexico, are used for firewood or charcoal, but they have several other non-timber-associated usages, which may promote their conservation (Luna-José et al., 2003).
We did not find an association between the density of individuals and the orientation of the slope, but we found 2 pine species distributed only on south-facing slopes, P. leiophylla and P. montezumae. This slope receives more solar radiation (González-Tagle et al., 2008). Due to the low number of individuals that we recorded for both species, we cannot conclude that both are naturally distributed only on slopes with southern orientation. It could be that their populations have been eliminated from the northern slopes by anthropogenic activities.
Pine and oak alpha diversity. Patterns of alpha diversity were not associated with the altitudinal gradient. We expected to find either one of the most commonly reported patterns, i.e., monotonic decreasing or hump-shaped (McCain & Grytnes, 2010; Rahbek, 2005). Therefore, in the area, variables associated with elevation (e.g., temperature and moisture) do not determine species alpha diversity patterns. Again, past human disturbances may be shaping these tree communities.
According to the list of tree species recorded in Michoacán by Cué-Bär et al. (2006), the MBBR harbors considerable oak species richness, with 12 species reported, representing about one third of the 35 oak species recorded for the entire state of Michoacán. In our study, we recorded only 5 of these 12 oak species. The lack of representation of the remaining 7 oak species could be because we did not sample in Cerro Altamirano, a detached part of the reserve located 27.4 km north of the main part of the reserve. We also did not sample at Cerro Pelón, located to the south of the MBBR, because the vegetation elevation gradient at this last site did not meet the sampling criteria for this study due to the lack of contiguous forest cover. The missing species include Q. candicans, Q. castanea, Q. crassipes, Q. desertícola, Q. glabrescens, Q. greggii, and Q. martinezii. The lack of representation of these oak species in our sample may indicate that they are located within sites with special conditions or that their current densities are very low.

Figure 5. Beta diversity of pines and oaks across the elevation gradient in the MBBR: a, species dissimilarity including species turnover and nesting; b) dissimilarity associated with species turnover only across the elevation gradient; c) dissimilarity associated with species nesting only across the elevation gradient.
Similarly, 7 pine species have been reported in the MBBR (Cornejo-Tenorio & Ibarra-Manríquez 2017; Marlès et al., 2015). Of the 5 pine species we recorded, P. teocote, P. montezumae, and P. herrerae had not been documented in the MBBR in previous studies (Cornejo-Tenorio & Ibarra-Manríquez, 2017). This may be because we sampled in the buffer zone of the reserve, where we recorded P. teocote and P. herrerae, and not only in the core zone where Cornejo-Tenorio & Ibarra-Manríquez (2017) conducted their study. We did not record 2 pine species previously reported in the MBBR, Pinus hartwegii (Cornejo-Tenorio & Ibarra-Manríquez, 2017) and P. devoniana (Marlès et al., 2015). The former species is distributed at elevations above 3000 m and was collected at Cerro Pelón, where we did not sample. The latter is distributed at elevations below 2,400 m, so its abundance may be very low at the elevations included in this study. Nevertheless, half of the pine species recorded in the state of Michoacán (15 spp.; Cué-Bär et al., 2006) have been reported to occur in the MBBR. As we suggested for the oak species not present in our sample, it is possible that these pine species are found in low-density sites of the MBBR under specific microsite conditions. It is important to note that current forest management strategies focus on reforestation and protection of economically important species (e.g., Pinus pseudostrobus), which could affect the distribution of the remaining species.
The richness of pine and oak species in this study was comparable to other studies that have evaluated the distribution and diversity of these genera in mountainous areas of Mexico. For example, we recorded species richness similar to that reported by Zavala et al. (2007) for a temperate forest in the Chiapas highlands of southern Mexico. The authors recorded 6 pine and 6 oak species along an altitudinal gradient of 1,100 m (1,500 to 2,600 m). However, they considered lower elevations than those we analyzed (< 2,250 m). In another study conducted in the Cuitzeo Lake basin in Michoacán, Mexico, closer to the MBBR, Aguilar-Romero et al. (2016) recorded 9 oak species in an altitudinal gradient from 1,768 to 3,428 m. The higher diversity of oaks in the Cuitzeo Lake basin compared to the MBBR could be explained by the fact that the former study covered a larger area (402,600 ha) and a wider altitudinal range than our study, including plots at lower elevations where oaks are dominant. Similarly, in a study conducted in Oaxaca, Mexico by Martin et al. (2021) on a 900 m gradient (2,300-3,200 m) in a managed area of 9,554 ha, the authors recorded 10 oak and 8 pine species. Although the MBBR is subject to constant anthropogenic disturbance, the area still supports a high diversity of pine and oak species.
Pine and oak beta diversity. Although we found that species dissimilarity was associated with the altitudinal gradient, it did not present an increasing or decreasing pattern along the altitudinal gradient as found in other studies (Nanda et al., 2021; Fontana et al., 2020; Sabatini et al., 2017; Wang et al., 2002). The most significant dissimilarity between sites was caused by the different species present at the lowest and highest points of the altitudinal gradient, with less dissimilarity at intermediate elevations, forming an inverted hump. This pattern of dissimilarity may be due to the high dominance of Pinus pseudostrobus and Quercus laurina at intermediate points and their low density at the extremes of the elevational gradient.
According to Socolar et al. (2016), when dissimilarity occurs due to species turnover, diversity can be conserved by maintaining landscape heterogeneity and conserving as much area as possible. In the case of the MBBR, dissimilarity is produced by both species turnover and nesting, so in order to preserve the biodiversity of the area, it is essential to conserve both the most diverse sites and the most distant sites where the greatest floristic turnover occurs.
Considering the conservation importance of the MBBR and the fact that most of the pine and oak species have restricted distributions with few individuals, it is necessary to re-direct the management and conservation strategies applied in the area. MBBR management plans do not consider the distribution and diversity patterns of plant species in the area because there is little information on these patterns. Without adequate planning, activities carried out in the biosphere reserve could affect the diversity and distribution of pine and oak species, resulting in the local extinction of less abundant (subdominant) species.
To protect and maintain the biodiversity found in the MBBR, it is essential that reforestation and management strategies not only focus on tree species that host the monarch butterfly (A. religiosa) or the most economically important pine species, such as P. pseudostrobus. It is also essential to consider sensitive species and other species that are also of high ecological, economic, and cultural importance. In particular, management strategies must assess the vulnerability of populations of subdominant pine and oak species in the area and design their management strategies on this basis. Maintaining the integrity of ecosystems is essential to sustain all the processes and ecosystem services they provide. For example, inventories of species and their abundance must be made to protect those with limited distribution and low densities. Forest plantations with different species are also needed to reduce the pressure of logging in natural forests (Ghazoul et al., 2019). These strategies must focus on sustainable development, seeking to ensure a stable economy and the well-being of the inhabitants of the MBBR, as well as protecting the biodiversity of ecosystems and the ecosystem services they provide.
Furthermore, it is necessary to determine the disturbance regimes occurring in the area, their dynamics, and their influence on the recruitment and regeneration processes of the different pine and oak species. For example, to preserve the natural dynamics of these ecosystems, anthropogenic disturbances should ideally simulate natural disturbances (North & Keeton, 2008). Finally, the lack of a well-defined distribution pattern and the alpha and beta diversity associated with elevation make it difficult to predict how species will respond to altered disturbance regimes in the future due to climate change.
Limitations and suggestions. Our study focused on 2 dominant genera in the vegetation of the MBBR, excluding other species, including A. religiosa. The distribution of that species has been evaluated in other recent studies (see Sáenz-Ceja & Pérez-Salicrup, 2020). The analysis was carried out at a local scale, which makes it difficult to determine whether the distribution and diversity patterns observed are inherent to subtropical montane forests or are exclusive to the MBBR, related to the forest management strategies implemented there. The lack of available information on the distribution patterns of pine and oak in Mexico has made it difficult for us to compare our results with other studies and, therefore, to draw solid conclusions about our findings. We believe it is essential to study the distribution patterns of pine and oak at the local and regional levels in other areas of the country to better understand their distribution in mountainous areas. Likewise, it is imperative to analyze the recruitment patterns of the subdominant species of the MBBR to assess their conservation status in the area.
In the MBBR, the distribution patterns and alpha diversity of pines and oaks did not show a well-defined pattern associated with the altitudinal gradient. These results suggest that variables associated with elevation (e.g., humidity and temperature) do not determine the distribution patterns and alpha diversity of the communities of these genera along the altitudinal gradient in the area. Anthropogenic factors, such as deforestation and inadequate reforestation strategies, must be evaluated in future studies because they are overriding the effect of evolutionary and biogeographic processes on the distribution of these species. In the area, P. pseudostrobus and Q. laurina were the dominant and most abundant species. The remaining pine and oak species showed restricted distributions with poorly defined patterns of species turnover. Activities such as logging, agricultural activities, and poor forest management may also influence the high dominance of P. pseudostrobus and the low density and restricted distribution patterns of the subdominant pine species.
Floristic dissimilarity is mainly due to species turnover, and although it is associated with the elevational gradient, it did not show an increase or decrease pattern as we expected, but rather a pattern in the form of an inverted hump, with more floristic dissimilarity at the extremes of the elevational gradient. The lack of well-defined species shifts along the elevational gradient makes it difficult for future studies to predict how species turnover will occur under the effects of climate change.
Acknowledgments
We are grateful to M.G. Cornejo-Tenorio and J.E. Sáenz-Ceja for their help in identifying the oak and pine species, to M.T. Oropeza-Sánchez for his help with the statistical analyses, to the people from the MBBR ejidos. To R. Ortiz-Mendoza and my colleagues from the Ecology and Forest Resources Laboratory of IIES for their support in the field. We thank Alternare AC for allowing us to use their facilities to carry out the fieldwork. We thank the support of Posgrado en Ciencias Biológicas, UNAM, as this work is part of the AGM doctoral dissertation. We appreciate the financial and logistical support of the Universidad Nacional Autónoma de México (UNAM) Project PAPIIT IN214820 and IN209716, the scholarship of the National Council of Humanities, Sciences and Technologies (Conahcyt), the Complementary Supports Program for Indigenous Women 2018 (Conahcyt).
Appendix. Sampling coverage analysis showed that sampling was equally complete at all points, with values exceeding 90%.

References
Aguilar-Romero, R., García-Oliva, F., Pineda-García, F., Torres, I., Peña-Vega, E., Ghilardi, A. et al. (2016). Patterns of distribution of nine Quercus species along an environmental gradient in a fragmented landscape in central Mexico. Botanical Sciences, 94, 471–482. https://doi.org/10.17129/botsci.620
Alfaro-Reyna, T., Martínez-Vilalta, J., & Retana, J. (2019). Regeneration patterns in Mexican pine-oak forests.
Forest Ecosystems, 6, 50. https://doi.org/10.1186/s40663-019-0209-8
Barry, R. (2008). Mountain weather and climate (3rd Ed.). Boulder, Colorado: Cambridge University Press. https://doi.org/10.1017/CBO9780511754753
Baselga, A., & Orme, C. D. L. (2012). Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x
Brambach, F., Leuschner, C., Tjoa, A., & Culmsee, H. (2017). Diversity, endemism, and composition of tropical mountain forest communities in Sulawesi, Indonesia, in relation to elevation and soil properties. Perspectives in Plant Ecology, Evolution and Systematics, 27, 68–79. https://doi.org/10.1016/j.ppees.2017.06.003
Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R. et al. (2002). Positive interactions among alpine plants increase with stress. Nature, 417, 844–848. https://doi.org/10.1038/nature00812
Carlón-Allende, T., Mendoza, M. E., Villanueva-Díaz, J., & Pérez-Salicrup, D. R. (2016). Análisis espacial del paisaje como base para muestreos dendrocronológicos: El caso de la Reserva de la Biosfera Mariposa Monarca, México. Madera y Bosques, 21, 11–22. https://doi.org/10.21829/myb.2015.212442
Champo-Jiménez, O., Valderrama-Landeros, L., & España-Boquera, M. L. (2012). Pérdida de cobertura forestal en la Reserva de la Biósfera Mariposa Monarca, Michoacán, México (2006-2010). Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18, 143–157. https://doi.org/10.5154/r.rchscfa.2010.09.074
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533–2547. https://doi.org/
10.2307/41739612
Chao, A., Kubota, Y., Zelený, D., Chiu, C. H., Li, C. F., Kusumoto, B. et al. (2020). Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 35, 292–314. https://doi.org/10.1111/1440-1703.12102
Chao, A., Thorn, S., Chiu, C. H., Moyes, F., Hu, K. H., Chazdon, R. L. et al. (2023). Rarefaction and extrapolation with beta diversity under a framework of H ill numbers: the iNEXT. beta3D standardization. Ecological Monographs, 93, e1588. https://doi.org/10.1002/ecm.1588
Conanp (Comisión Nacional de Áreas Naturales Protegidas) (2001). Programa de manejo de la Reserva de la Biosfera Mariposa Monarca. Comisión Nacional de Áreas Naturales Protegidas. Ciudad de México: Conanp.
Cornejo-Oviedo, E., Valencia-Manzo, S., & Flores-López, C. (2004). Índice de sitio para Pinus herrerae Martínez en Cd. Hidalgo, Michoacán. Revista Fitotecnia Mexicana, 27, 77–80. https://doi.org/10.35196/rfm.2004.Especial_1.77
Cornejo-Tenorio, G., & Ibarra-Manríquez, G. (2017). Flora of the core zones of the Monarch Butterfly Biosphere Reserve, Mexico: composition, geographical affinities and beta diversity. Botanical Sciences, 95, 103-129. https://doi.org/10.17129/botsci.803
Cué-Bär, E. M., Villaseñor, J. L., Arredondo-Amezcua, L., Cornejo-Tenorio, G., & Ibarra-Manríquez, G. (2006). La flora arbórea de Michoacán, México. Boletín de La Sociedad Botánica de México, 78, 47–81. https://doi.org/10.17129/botsci.1721
Fontana, V., Guariento, E., Hilpold, A., Niedrist, G., Steinwandter, M., Spitale, D. et al. (2020). Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Scientific Reports, 10, 12516. https://doi.org/10.1038/s41598-020-69569-9
Galicia, L., Chávez-Vergara, B. M., Kolb, M., Jasso-Flores, R. I., Rodríguez-Bustos, L. A., Solís, L. E. et al. (2018). Perspectives of the socioecological approach in the preservation, utilization and the payment of environmental services of the temperate forests of Mexico. Madera y Bosques, 24, 1–18. https://doi.org/10.21829/myb.2018.2421443
Galicia, L., Potvin, C., & Messier, C. (2015). Maintaining the high diversity of pine and oak species in mexican temperate forests: A new management approach combining functional zoning and ecosystem adaptability. Canadian Journal of Forest Research, 45, 1358–1368. https://doi.org/10.1139/cjfr-2014-0561
Galicia, L., & Zarco-Arista, A. E. (2014). Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: A review. International Journal of Biodiversity Science. Ecosystem Services and Management, 10, 275–288. https://doi.org/10.1080/21513732.2014.973907
Ghazoul, J., Bugalho, M., & Keenan, R. (2019). Plantations take economic pressure off natural forests. Nature, 570, 307–308. https://doi.org/10.1038/d41586-019-01878-0
Giménez-de Azcárate, J., Ramírez, M. I., & Pinto, M. (2003). Las comunidades vegetales de la Sierra de Angangueo (estados de Michoacán y México, México): clasificación, composición y distribución. Lazaroa, 24, 87–111. https://doi.org/10.5209/LAZAROA.10053
Gómez-Pineda, E., Sáenz-Romero, C., Ortega-Rodríguez, J. M., Blanco-García, A., Madrigal-Sánchez, X., Lindig-Cisneros, R. et al. (2020). Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecological Applications, 30, e02041. https://doi.org/10.1002/eap.2041
González-Tagle, M. A., Schwendenmann, L., Pérez, J. J., & Schulz, R. (2008). Forest structure and woody plant species composition along a fire chronosequence in mixed pine–oak forest in the Sierra Madre Oriental, Northeast Mexico. Forest Ecology and Management, 256, 161–167. https://doi.org/10.1016/j.foreco.2008.04.021
Herrera-Hernández, R., & Escobar, A. S. (2021). Pinus montezumae Lambert (Pinaceae). In Rodríguez-Trejo, D. A. (Coord.). Semillas de especies forestales (pp. 201–207). División de Ciencias Forestales, Universidad Autónoma Chapingo. Chapingo, Estado de México.
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613
Luna-José, A. D., Montalvo-Espinosa, L., & Rendón-Aguilar, B. (2003). Los usos no leñosos de los encinos en México. Boletín de la Sociedad Botánica de México, 72, 107–117. https://doi.org/10.17129/botsci.1671
MacArthur, R. H. (1972). Geographical ecology: patterns in the distribution of species. Princeton NJ: Princeton University Press. https://doi.org/10.2307/1934352
Magurran, A. E. (2004). Measuring biological diversity. Oxford: Blackwell Publishing.
Manzanilla-Quiñones, U., Delgado-Valerio, P., Hernández-Ramos, J., Molina-Sánchez, A., García-Magaña, J. J., & Rocha-Granados, M. D. C. (2018). Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: implicaciones para la selección de áreas productoras de semillas y de conservación. Acta Botanica Mexicana, 126, e1398. https://doi.org/10.21829/abm126.2019.1398
Marlès, M. J., Valor, I. T., Claramunt, L. B., Pérez-Salicrup, D. R., Maneja, Z. R., Sánchez M. S. et al. (2015). Análisis dendroclimático de Pinus pseudostrobus y Pinus devoniana en los municipios de Áporo y Zitácuaro (Michoacán), Reserva de la Biósfera de la Mariposa Monarca. Investigaciones Geográficas, 2015, 19–32. https://doi.org/10.14350/rig.43338
Martin, M. P., Peters, C. M., Asbjornsen, H., & Ashton, M. S. (2021). Diversity and niche differentiation of a mixed pine-oak forest in the Sierra Norte, Oaxaca, Mexico. Ecosphere, 12, e03475. https://doi.org/10.1002/ecs2.3475
Maza-Villalobos, S., Macedo-Santana, F., Rodríguez-Velázquez, J., Oyama, K., & Martínez-Ramos, M. (2014). Variación de la estructura y composición de comunidades de árboles y arbustos entre tipos de vegetación en la Cuenca de Cuitzeo, Michoacán. Botanical Sciences, 92, 243–258. https://doi.org/10.17129/botsci.104
McCain, C. M., & Grytnes, J. (2010). Elevational Gradients in Species Richness. In Encyclopedia of Life Sciences. Chichester: John Wiley & Sons. https://doi.org/10.1002/97
80470015902.a0022548
Moreno, C. E., Barragán, F., Pineda, E., & Pavón, N. P. (2011). Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad, 82, 1249–1261. https://doi.org/10.22201/ib.20078706e.2011.4.745
Nanda, S. A., Haq, M., Singh, S. P., Reshi, Z. A., Rawal, R. S., Kumar, D. et al. (2021). Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc. Scientific Reports, 11, 20155. https://doi.org/10.1038/s41598-021-99675-1
Navarrete, J. L., Ramírez, M. I., & Pérez-Salicrup, D. R. (2011). Logging within protected areas: Spatial evaluation of the monarch butterfly biosphere reserve, Mexico. Forest Ecology and Management, 262, 646–654. https://doi.org/10.1016/j.foreco.2011.04.033
North, M. P., & Keeton, W. S. (2008). Emulating natural disturbance regimes: an emerging approach for sustainable forest management. In R. Lafortezza, J. Chen, G. Sanesi, & T. Crow (Eds.), Landscape ecology: sustainable management of forest landscapes (pp. 341–372). The Netherlands: Verlag Press.
Ohdo, T., & Takahashi, K. (2020). Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants, 12, 1–10. https://doi.org/10.1093/AOBPLA/PLAA014
R Core Team (2023). R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x
Ramírez, M. I., López-Sánchez, J., & Barrasa, S. (2019). Mapa de vegetación y cubiertas del suelo, 2018. Reserva de la Biosfera Mariposa Monarca. Serie Cartográfica Monarca, Volumen II. Morelia: CIGA-UNAM.
Rzedowski, J., (2006). Vegetación de México. Edición digital. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMxPort.pdf
Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A., & Chytrý, M. (2017). Beta-diversity of central european forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography, 41, 1038–1048. https://doi.org/10.1111/ecog.02809
Sáenz-Ceja, J. E., & Pérez-Salicrup, D. R. (2019). Dendrochronological reconstruction of fire history in coniferous forests in the Monarch Butterfly Biosphere Reserve, Mexico. Fire Ecology, 15, 18. https://doi.org/10.1186/s42408-019-0034-z
Sáenz-Ceja, J. E., & Pérez-Salicrup, D. R. (2020). Modification of fire regimes inferred from the age structure of two conifer species in a Tropical Montane Forest. Forests, 11, 1193. https://doi.org/10.3390/f11111193
Sáenz-Ceja, J. E., & Pérez-Salicrup, D. R. (2021). Avocado cover expansion in the Monarch Butterfly Biosphere Reserve, Central Mexico. Conservation, 1, 299–310. https://doi.org/10.3390/conservation1040023
Semarnat (Secretaría de Medio Ambiente y Recursos Naturales). (2018). Anuario estadístico de la producción forestal 2018. Ciudad de México: Secretaría de Medio Ambiente y Recursos Naturales.
Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecology and Evolution, 31, 67–80. https://doi.org/10.1016/j.tree.2015.11.005
Toledo-Garibaldi, M., & Williams-Linera, G. (2014). Tree diversity patterns in successive vegetation types along an elevation gradient in the Mountains of Eastern Mexico. Ecological Research, 29, 1097–1104. https://doi.org/10.1007/s11284-014-1196-4
Valencia, S. (2004). Diversidad del género Quercus (Fagaceae) en México. Botanical Sciences, 75, 33–53. https://doi.org/10.17129/botsci.1692
Venables, W. N., & Ripley, B. D. (2002) Modern applied statistics with S. Fourth edition. New York: Springer.
Vicente, H. J. C. (2020). Monitoreo de restauración activa y pasiva en un sitio perturbado dentro de la zona núcleo de la Reserva de la Biosfera Mariposa Monarca (Tesis de maestría). Posgrado en Ciencias Biológicas. Facultad de Biología. Universidad Michoacána San Nicolás de Hidalgo. Michoacán, México.
Vidal, O., López-García, J., & Rendón-Salinas, E. (2014). Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conservation Biology, 28, 177–186. https://doi.org/10.1111/cobi.12138
Villers-Ruiz, L., & Trejo-Vázquez, I. (1997). Assessment of the vulnerability of forest ecosystems to climate change in Mexico. Climate Research, 9, 87–93. https://doi.org/10.3354/cr009087
Wang, G., Zhou, G., Yang, L., & Li, Z. (2002). Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 165, 169–181. https://doi.org/10.1023/A:1022236115186
Whittaker, R. H. (1956). Vegetation of the Great Smoky Mountains. Ecological Monographs, 26, 1–80. https://doi.org/10.2307/1943577
Whittaker, R. H. (1967). Gradient analysis of vegetation. Biological Reviews, 42, 207–264. https://doi.org/10.1111/j.1469-185X.1967.tb01419.x
Zavala, M. A., Galindo-Jaimes, L., & González-Espinosa, M. (2007). Models of regional and local stand composition and dynamics of pine-oak forests in the central highlands of Chiapas (Mexico): theoretical and management implications. In Biodiversity loss and conservation in fragmented forest landscapes: the forests of montane Mexico and temperate South America (pp. 223–243). Newton Oxford, England, United Kingdom: CAB International https://doi.org/10.1079/9781845932619.0223
Zhou, Y., Ochola, A. C., Njogu, A. W., Boru, B. H., Mwachala, G., Hu, G. et al. (2019). The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecology and Evolution, 9, 4495–4503. https://doi.org/10.1002/ece3.5027
